Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive storm pulls water and ammonia ices from Saturn's depths

04.09.2013
Once every 30 years or so, or roughly one Saturnian year, a monster storm rips across the northern hemisphere of the ringed planet.

In 2010, the most recent and only the sixth giant storm on Saturn observed by humans began stirring. It quickly grew to superstorm proportions, reaching 15,000 kilometers (more than 9,300 miles) in width and visible to amateur astronomers on Earth as a great white spot dancing across the surface of the planet.

Now, thanks to near-infrared spectral measurements taken by NASA's Cassini orbiter and analysis of near-infrared color signatures by researchers at the University of Wisconsin-Madison, Saturn's superstorm is helping scientists flesh out a picture of the composition of the planet's atmosphere at depths typically obscured by a thick high-altitude haze.

The key finding: cloud particles at the top of the great storm are composed of a mix of three substances: water ice, ammonia ice, and an uncertain third constituent that is possibly ammonium hydrosulfide. According to the Wisconsin researchers, the observations are consistent with clouds of different chemical compositions existing side-by-side, although a more likely scenario is that the individual cloud particles are composed of two or all three of the materials.

Writing in the current edition (Sept. 9, 2013) of the journal Icarus, a team led by UW-Madison Space Science and Engineering Center planetary scientists Lawrence Sromovsky, and including Kevin Baines and Patrick Fry, reports the discovery of the icy forms of water and ammonia. Water in the form of ice has never before been observed on Saturn.

"We think this huge thunderstorm is driving these cloud particles upward, sort of like a volcano bringing up material from the depths and making it visible from outside the atmosphere," explains Sromovsky, a senior scientist at UW-Madison and an expert on planetary atmospheres. "The upper haze is so optically pretty thick that it is only in the stormy regions where the haze is penetrated by powerful updrafts that you can see evidence for the ammonia ice and the water ice. Those storm particles have an infrared color signature that is very different from the haze particles in the surrounding atmosphere."

Scientists believe Saturn's atmosphere is a layered sandwich of sorts, with a deck of water clouds at the bottom, ammonia hydrosulfide clouds in the middle, and ammonia clouds near the top, just below an upper tropospheric haze of unknown composition that obscures almost everything.

The latest great storm on Saturn and the presence of the Cassini probe now orbiting the planet gave scientists a chance to peek beneath the haze and learn more about the dynamics and chemical composition of the planet's deep atmosphere.

First noticed by amateur astronomers, the massive storm works like the much smaller convective events on Earth, where air and water vapor are pushed high into the atmosphere, resulting in the towering, billowing clouds of a thunderstorm. On Saturn, not only are the storms much bigger, they are far more violent, with models predicting vertical winds of more than 300 miles per hour for these rare giant storms.

The effect, Sromovsky says, is to loft the aerosols found deep in the atmosphere to the visible cloud tops, providing a rare glimpse of normally hidden materials. "It starts at the water cloud level and develops a huge convective tower. It is similar to a big thunderstorm, only 10 to 20 times taller and covering an even greater area," he explains.

The new work helps validate the models of Saturn's great storms as well as previous observations that detected water and ammonia in vapor form. The presence of water ice, he says, supports the idea that Saturn's superstorms are powered by condensation of water and originate deep in the atmosphere, about 200 kilometers below the visible cloud deck.

"The water could only have risen from below, driven upward by powerful convection originating deep in the atmosphere. The water vapor condenses and freezes as it rises. It then likely becomes coated with more volatile materials like ammonium hydrosulfide and ammonia as the temperature decreases with their ascent," Sromovsky adds.

The interesting effect, he notes, is that in Saturn's massive storm, at least, the observations can be matched by having particles of mixed composition, or clouds of water ice existing side-by-side with clouds of ammonia ice. In the latter scenario, water ice would make up 22 percent of the cloud head and ammonia ice 55 percent. The remaining fraction would be made up by the third constituent, which though less certain, is believed to be ammonia hydrosulfide.

"Up until now, there have been no quantitative calculations of spectra for cloud structures and compositions that matched the observed spectrum of an actual storm cloud feature," says Sromovsky.

Terry Devitt
608-262-8282
trdevitt@wisc.edu

Lawrence Sromovsky | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>