Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive stars mark out Milky Way's 'missing' arms

17.12.2013
A 12-year study of massive stars has reaffirmed that our Galaxy has four spiral arms, following years of debate sparked by images taken by NASA's Spitzer Space Telescope that only showed two arms.

The new research, which is published online today [17 December] in the Monthly Notices of the Royal Astronomical Society, is part of the RMS Survey, which was launched by academics at the University of Leeds.


This shows the distribution of massive stars in the new study. Our location within the Galaxy is circled in black.

Credit: J. Urquhart et al. Background image by Robert Hurt of the Spitzer Science Center.

Astronomers cannot see what our Galaxy, which is called the Milky Way, looks like because we are on the inside looking out. But they can deduce its shape by careful observation of its stars and their distances from us.

"The Milky Way is our galactic home and studying its structure gives us a unique opportunity to understand how a very typical spiral galaxy works in terms of where stars are born and why," said Professor Melvin Hoare, a member of the RMS Survey Team in the School of Physics & Astronomy at the University of Leeds and a co-author of the research paper.

In the 1950s astronomers used radio telescopes to map our Galaxy. Their observations focussed on clouds of gas in the Milky Way in which new stars are born, revealing four major arms. NASA's Spitzer Space Telescope, on the other hand, scoured the Galaxy for infrared light emitted by stars. It was announced in 2008 that Spitzer had found about 110 million stars, but only evidence of two spiral arms.

The astronomers behind the new study used several radio telescopes in Australia, USA and China to individually observe about 1650 massive stars that had been identified by the RMS Survey. From their observations, the distances and luminosities of the massive stars were calculated, revealing a distribution across four spiral arms.

"It isn't a case of our results being right and those from Spitzer's data being wrong – both surveys were looking for different things," said Professor Hoare. "Spitzer only sees much cooler, lower mass stars – stars like our Sun – which are much more numerous than the massive stars that we were targeting."

Massive stars are much less common than their lower mass counterparts because they only live for a short time – about 10 million years. The shorter lifetimes of massive stars means that they are only found in the arms in which they formed, which could explain the discrepancy in the number of galactic arms that different research teams have claimed.

"Lower mass stars live much longer than massive stars and rotate around our Galaxy many times, spreading out in the disc. The gravitational pull in the two stellar arms that Spitzer revealed is enough to pile up the majority of stars in those arms, but not in the other two," explains Professor Hoare. "However, the gas is compressed enough in all four arms to lead to massive star formation."

Dr James Urquhart from the Max Planck Institute for Radio Astronomy in Bonn, Germany, and lead author of the paper, said: "It's exciting that we are able to use the distribution of young massive stars to probe the structure of the Milky Way and match the most intense region of star formation with a model with four spiral arms."

Professor Hoare concludes, "Star formation researchers, like me, grew up with the idea that our Galaxy has four spiral arms. It's great that we have been able to reaffirm that picture."

Further information

Link to research paper: http://dx.doi.org/10.1093/mnras/stt2006

Professor Melvin Hoare is available for interview. Please contact Sarah Reed, Press Officer, University of Leeds on 0113 34 34196 or email s.j.reed@leeds.ac.uk

Image

Image credit: J. Urquhart et al. Background image by Robert Hurt of the Spitzer Science Center.

University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK and a member of the Russell Group of research-intensive universities.

The 2008 Research Assessment Exercise showed the University of Leeds to be the UK's eighth biggest research powerhouse and the University's vision is to secure a place among the world's leading universities by 2015.

Sarah Reed | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>