Massive black holes halt star birth in distant galaxies

This is a composite X-ray/submillimeter image of the Chandra Deep Field North. The Chandra Deep Field North lies in the constellation of Ursa Major, Green and red correspond to the Herschel SPIRE 250 and 350 micron images showing the sky crowded with submillimeter-bright, dusty galaxies. Blue shows the X-rays recorded by Chandra, most of which come from active galactic nuclei. Credit: ESA/Herschel/HerMES; NASA/CSX<br>

All large galaxies have a massive black hole at their centre, each millions of times the mass of a single star. For over a decade scientists have been puzzled as to why the masses of the black holes are linked to the size of the round central bulges at the hearts of galaxies. The suspicion has long been that the answer lies in the early lives of the galaxies, when the stars in the bulge were forming. To study this phase, astronomers need to look at very distant galaxies, so far away that we see them as they were billions of years ago.

Although the black holes themselves cannot be seen, the material closest to them can get incredibly hot, emitting large amounts of light over a very wide range of wavelengths, from radio waves to x-rays. The light from this super-heated material can be trillions of times as bright as the Sun, with brighter emissions indicating a more massive black hole. Ther e are also strong flows of material (winds and jets) expelled from the region around the black hole.

The hot material near the black hole outshines almost all the light from rest of the host galaxy, except for the light with wavelengths just less than a millimetre. This sub-millimetre light is invisible to normal telescopes but is seen by the Herschel Space Observatory and indicates the rate at which stars are being formed in the galaxy.

“Herschel provides a new perspective and is conducting a number of surveys of galaxies near and far, in order to unravel the mysteries of the formation and evolution of galaxies across cosmic time,” explains Göran Pilb'ratt, the ESA Herschel Project Scientist.

The latest study, led by Dr. Mat Page of University College London's Mullard Space Science Laboratory, used images from the SPIRE camera on board Herschel to calculate the amount of star formation in distant galaxies. This can be compared with the X-rays detected by NASA's Chandra X-ray satellite, which indicates the growth-rate of the black hole.

“Space telescopes like Herschel let us look back in time, and that's just what we need to do to find out how today's galaxies were built. Galaxies were forming stars like crazy when the Universe was young, but trying to see the light from star formation against the glare from the hot stuff around the black hole has been almost impossible until now. That's all changed with the new wavelengths opened up by Herschel's SPIRE camera” said Dr. Page.

Galaxies with massive black holes were found to have high rates of star formation, with some forming stars at a thousand times the rate of our own Milky Way galaxy today. But intriguingly, the Herschel results show that the fastest-growing black holes are in galaxies with very little star formation – once the radiation coming from close to the black hole exceeds a certain power, it tends to “switch off” star formation in its galaxy.

Prof. Seb Oliver from the University of Sussex and co-leader of the HerMES project, said “This fantastic result provides an amazing link between black holes and star formation in the early Universe. It is a huge clue to this decade old riddle and could mean that once a black hole is big enough and producing enough radiation, it somehow shuts down the formation of stars in the surrounding galaxy.”

The most likely explanation is that the incredibly strong winds from around these very powerful black holes are preventing the gas and dust in the rest of the galaxy from forming stars.

“This means that the total number of stars that form is limited by the power of the black hole that shapes that galaxy” said Dr Myrto Symeonidis, a co-author of the study.

Prof. Matt Griffin of Cardiff University, who is the Principal Investigator of the international team which built the Herschel-SPIRE instrument said “This important discovery shows how the great sensitivity of SPIRE is allowing us to look back in time and understand the early history and development of the galaxies that populate today's universe. Only a small fraction of the instrument's observations have been fully analysed so far, and we're looking forward to many more exciting results.”

Further information
ESA Herschel website: www.esa.int/herschel
UK Herschel website: herscheltelescope.org.uk HerMES website: hermes.sussex.ac.uk
Notes for editors

This research is published in the journal Nature: “The suppression of star formation by powerful active galactic nuclei,” by M. Page et al (2012) Nature, on 10th May 2012

The observations were made of a small area of sky called the Chandra Deep Field North, which lies in the constellation of Ursa Major has been observed by a number of observatories at a wide range of wavelengths. The Herschel data was taken as part of the HerMES project, which has recently issued its first data release (April 2012).

Herschel

Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. It was launched in May 2009. The Herschel programme forms a key part of the UK Space Agency's space science programme. The SPIRE instrument which was used in this work, was led by the UK.

SPIRE

The SPIRE (Spectral and Photometric Imaging Receiver) instrument has been developed by an international consortium. It is led by a Principal Investigator from Cardiff University. The SPIRE instrument contains an imaging photometer (camera) and an imaging spectrometer. The camera operates in three wavelength bands centred on 250, 350 and 500 μm, and so can make images of the sky simultaneously in three sub-millimetre colours. The SPIRE instrument has been built, assembled and tested in the UK at The Rutherford Appleton Laboratory in Oxfordshire by an international consortium from Europe, US, Canada and China, with strong support from the Science and Technology Facilities Council.

SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including: Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UK Space Agency (UK); and NASA (USA).

HerMES

HerMES is the Herschel Multi-tiered Extragalactic Survey, an astronomical project to study the evolution of galaxies in the distant Universe. It is the largest project on ESA's Herschel Space Observatory. The project is carried out by a large team, made up primarily of people who built one of the instruments on Herschel called SPIRE. Hermes is also the Olympian messenger god, ruler of travelers, boundaries, weights and measures.

HerMES has mapped large regions of the sky using cameras that are sensitive to infrared radiation. We have discovered over 100 thousand galaxies. The light from most of these galaxies will have taken more than 10 billion years to reach us, which means we see them as they were 3 to 4 billion years after the big bang. Since the cameras are detecting infrared radiation they see star formation that is hidden from conventional telescopes. We expect that our cameras will catch many of the galaxies at the moment they are forming most of their stars. HerMES is led by Prof. Seb Oliver and Dr. Jamie Bock

UK Space Agency

The UK Space Agency is at the heart of UK efforts to explore and benefit from space. It is responsible for all strategic decisions on the UK civil space programme and provides a clear, single voice for UK space ambitions.

The UK Space Agency is responsible for ensuring that the UK retains and grows a strategic capability in the space-based systems, technologies, science and applications. It leads the UK's civil space programme in order to win sustainable economic growth, secure new scientific knowledge and provide benefits to all citizens.

The UK Space Agency:
Co-ordinates UK civil space activity
Encourages academic research
Supports the UK space industry
Raises the profile of UK space activities at home and abroad
Increases understanding of space science and its practical benefits
Inspires our next generation of UK scientists and engineers
Licences the launch and operation of UK spacecraft
Promotes co-operation and participation in the European Space programme
Contact details

Dr Mat Page Mullard Space Science Laboratory University College London
Email: mjp@mssl.ucl.ac.uk Tel: +44 (0)1483 204283
Dr Myrto Symeonidis
Mullard Space Science Laboratory
University College London
Email: msy@mssl.ucl.ac.uk
Tel: +44 (0)1483 204905
Prof Seb Oliver
University of Sussex
Email: S.Oliver@sussex.ac.uk
Tel: +44 (0)1273 678852
Prof Matt Griffin
Cardiff University
Email: matt.griffin@astro.cf.ac.uk
Tel: +44 (0)29 2087 4203
Madeleine Russell
Press Officer
UK Space Agency
Email: madeleine.russell@ukspaceagency.bis.gsi.gov.uk
Tel: +44 (0)1793 418069

Media Contact

Madeleine Russell EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors