Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Martian Rover 'Opportunity' Finds Evidence of Water Flows at Ancient Impact Crater Endeavour

07.05.2012
Evidence of ancient water at a Martian crater is the latest in a long series of discoveries by a surprisingly long-lived Mars Exploration Rover Opportunity, according to a paper published in the May 4 edition of the journal Science entitled, “Ancient Impact and Aqueous Processes at Endeavour Crater, Mars.” The latest discovery was made at the rim of the Endeavour Crater, a large ancient impact crater on Mars measuring 14 miles in diameter.

“The rover discovered evidence for low temperature liquid water and environments that would be conducive for life,” said Scott M. McLennan, Professor of Geochemistry at Stony Brook University and a member of the team that published the paper (Steven Squyres of Cornell University headed the team and is the principal investigator for the science instruments carried by the rover). Dr. McLennan noted that this was the third area on Mars visited by the Mars rovers that has produced evidence of “habitable” ancient geological environments.

Opportunity was one of two exploration rovers that landed on Mars eight years ago for what was planned as a three-month mission. According to the NASA Jet Propulsion Laboratory, Opportunity reached Endeavour Crater last August after driving for three years from another Martian crater, Victoria.

Dr. McLennan said Opportunity found highly elevated levels of zinc in some of the rocks at the rim of the crater, suggesting that there was a hydrothermal system – warm water – running through the rocks at one time. In addition, veins of gypsum discovered at the crater were strong evidence that low temperature waters had at one time passed through those rocks.

“If we found this on Earth there would be no question that you could find evidence of life,” said Dr. McLennan, noting that the Rover sent back some “spectacular” photos of the gypsum veins.

The Mars Rover Opportunity has given Stony Brook faculty and graduate and undergraduate students the opportunity to collaborate for eight years on scientific study of Mars as part of the Stony Brook Mars rover group, Dr. McLennan said. While Opportunity and its sister Rover Spirit were scheduled to operate for three months, “Everyone felt they had the capability of lasting quite a bit longer, but nobody thought Opportunity would last this long.” NASA selected Dr. McLennan to participate in the Mars Exploration Rover (MER) Mission.

The mission consisted of two rovers that arrived on opposite sides of Mars in 2004. Dr. McLennan has investigated data on Martian rock and surface deposits to gain insight into the ancient climates of that planet and contribute to NASA's overarching strategy of Mars Exploration: "Follow the Water", the search for past life on Mars, understanding past climates and why the climate changed so drastically, and evaluating the planet for human exploration. Opportunity landed in Eagle Crater on Mars on Jan. 25, 2004, three weeks after its rover twin, Spirit, landed halfway around the planet. Spirit stopped communicating in March 2010.

Powered by solar panels, Opportunity went into “hibernation” on a sun facing slope at the crater’s rim during the Martian winter due to reduced sunlight. It is scheduled to come out of that hibernation by mid-2012 or earlier if wind cleans dust off its solar panels. According to NASA, researchers plan to drive Opportunity in search of clay minerals that a Mars orbiter's observations indicate lie on Endeavour's rim.

Scott M. McLennan | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>