Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Martian Rover 'Opportunity' Finds Evidence of Water Flows at Ancient Impact Crater Endeavour

07.05.2012
Evidence of ancient water at a Martian crater is the latest in a long series of discoveries by a surprisingly long-lived Mars Exploration Rover Opportunity, according to a paper published in the May 4 edition of the journal Science entitled, “Ancient Impact and Aqueous Processes at Endeavour Crater, Mars.” The latest discovery was made at the rim of the Endeavour Crater, a large ancient impact crater on Mars measuring 14 miles in diameter.

“The rover discovered evidence for low temperature liquid water and environments that would be conducive for life,” said Scott M. McLennan, Professor of Geochemistry at Stony Brook University and a member of the team that published the paper (Steven Squyres of Cornell University headed the team and is the principal investigator for the science instruments carried by the rover). Dr. McLennan noted that this was the third area on Mars visited by the Mars rovers that has produced evidence of “habitable” ancient geological environments.

Opportunity was one of two exploration rovers that landed on Mars eight years ago for what was planned as a three-month mission. According to the NASA Jet Propulsion Laboratory, Opportunity reached Endeavour Crater last August after driving for three years from another Martian crater, Victoria.

Dr. McLennan said Opportunity found highly elevated levels of zinc in some of the rocks at the rim of the crater, suggesting that there was a hydrothermal system – warm water – running through the rocks at one time. In addition, veins of gypsum discovered at the crater were strong evidence that low temperature waters had at one time passed through those rocks.

“If we found this on Earth there would be no question that you could find evidence of life,” said Dr. McLennan, noting that the Rover sent back some “spectacular” photos of the gypsum veins.

The Mars Rover Opportunity has given Stony Brook faculty and graduate and undergraduate students the opportunity to collaborate for eight years on scientific study of Mars as part of the Stony Brook Mars rover group, Dr. McLennan said. While Opportunity and its sister Rover Spirit were scheduled to operate for three months, “Everyone felt they had the capability of lasting quite a bit longer, but nobody thought Opportunity would last this long.” NASA selected Dr. McLennan to participate in the Mars Exploration Rover (MER) Mission.

The mission consisted of two rovers that arrived on opposite sides of Mars in 2004. Dr. McLennan has investigated data on Martian rock and surface deposits to gain insight into the ancient climates of that planet and contribute to NASA's overarching strategy of Mars Exploration: "Follow the Water", the search for past life on Mars, understanding past climates and why the climate changed so drastically, and evaluating the planet for human exploration. Opportunity landed in Eagle Crater on Mars on Jan. 25, 2004, three weeks after its rover twin, Spirit, landed halfway around the planet. Spirit stopped communicating in March 2010.

Powered by solar panels, Opportunity went into “hibernation” on a sun facing slope at the crater’s rim during the Martian winter due to reduced sunlight. It is scheduled to come out of that hibernation by mid-2012 or earlier if wind cleans dust off its solar panels. According to NASA, researchers plan to drive Opportunity in search of clay minerals that a Mars orbiter's observations indicate lie on Endeavour's rim.

Scott M. McLennan | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>