Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Martian history: Finding a common denominator with Earth's

20.11.2012
A team of scientists, including Carnegie's Conel Alexander and Jianhua Wang, studied the hydrogen in water from the Martian interior and found that Mars formed from similar building blocks to that of Earth, but that there were differences in the later evolution of the two planets.

This implies that terrestrial planets, including Earth, have similar water sources--chondritic meteorites. However, unlike on Earth, Martian rocks that contain atmospheric volatiles such as water, do not get recycled into the planet's deep interior. Their work will be published in the December 1 issue of Earth and Planetary Science Letters. It is available online.

Much controversy surrounds the origin, abundance and history of water on Mars. The sculpted channels of the Martian southern hemisphere speak loudly of flowing water, but this terrain is ancient. Consequently, planetary scientists often describe early Mars as "warm and wet" and current Mars as "cold and dry."

Debate in the scientific community focuses on how the interior and crust of Mars formed, and how they differ from those of Earth. To investigate the history of Martian water and other volatiles, scientists at NASA's Johnson Space Center in Houston, Carnegie, and the Lunar and Planetary Institute in Houston studied water concentrations and hydrogen isotopic compositions trapped inside crystals within two Martian meteorites. The meteorites, called shergottites, were of the same primitive nature, but one was rich in elements such as hydrogen, whereas the other was depleted.

The meteorites used in the study contain trapped basaltic liquids, and are pristine samples that sampled various Martian volatile element environments. One meteorite appears to have changed little on its way from the Martian mantle up to the surface of Mars. It has a hydrogen isotopic composition similar to that of Earth. The other meteorite appears to have sampled Martian crust that had been in contact with the Martian atmosphere. Thus, the meteorites represent two very different sources of water. One sampled water from the deep interior and represents the water that existed when Mars formed as a planet, whereas the other sampled the shallow crust and atmosphere.

"There are competing theories that account for the diverse compositions of Martian meteorites," said lead Tomohiro Usui. "Until this study there was no direct evidence that primitive Martian lavas contained material from the surface of Mars."

Because the hydrogen isotopic compositions of the two meteorites differ, the team inferred that martian surface water has had a different geologic history than Martian interior water. Most likely, atmospheric water has preferentially lost the lighter hydrogen isotope to space, and has preferentially retained the heavier hydrogen isotope (deuterium).

That the enriched meteorite has incorporated crustal and atmospheric water could help to solve an important mystery. Are Martian meteorites that are enriched in components, such as water, coming from an enriched, deep mantle, or have they been overprinted by interaction with the Martian crust?

"The hydrogen isotopic composition of the water in the enriched meteorite clearly indicates that they have been overprinted, so this meteorite tells scientists more about the Martian crust than about the Martian mantle," Alexander said. "Conversely, the other meteorite yields more information about the Martian interior."

The concentrations of water in the meteorites are also very different. One has a rather low water concentration and that means that the interior of Mars is rather dry. Conversely, the enriched basalt has 10 times more water than the other one, suggesting that the surface of Mars could have been very wet at one time. Therefore, scientists are now starting to learn which meteorites tell us about the Martian interior and which samples tell us about the Martian surface.

"To understand the geologic history of Mars, more information about both of these environments is needed," Alexander said.

This workwas supported by a NASA Mars Fundamental Research Program grant, a NASA Cosmochemistry Program grant, and by a Astrobiology Institute grant ..

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Conel Alexander | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>