Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Martian history: Finding a common denominator with Earth's

A team of scientists, including Carnegie's Conel Alexander and Jianhua Wang, studied the hydrogen in water from the Martian interior and found that Mars formed from similar building blocks to that of Earth, but that there were differences in the later evolution of the two planets.

This implies that terrestrial planets, including Earth, have similar water sources--chondritic meteorites. However, unlike on Earth, Martian rocks that contain atmospheric volatiles such as water, do not get recycled into the planet's deep interior. Their work will be published in the December 1 issue of Earth and Planetary Science Letters. It is available online.

Much controversy surrounds the origin, abundance and history of water on Mars. The sculpted channels of the Martian southern hemisphere speak loudly of flowing water, but this terrain is ancient. Consequently, planetary scientists often describe early Mars as "warm and wet" and current Mars as "cold and dry."

Debate in the scientific community focuses on how the interior and crust of Mars formed, and how they differ from those of Earth. To investigate the history of Martian water and other volatiles, scientists at NASA's Johnson Space Center in Houston, Carnegie, and the Lunar and Planetary Institute in Houston studied water concentrations and hydrogen isotopic compositions trapped inside crystals within two Martian meteorites. The meteorites, called shergottites, were of the same primitive nature, but one was rich in elements such as hydrogen, whereas the other was depleted.

The meteorites used in the study contain trapped basaltic liquids, and are pristine samples that sampled various Martian volatile element environments. One meteorite appears to have changed little on its way from the Martian mantle up to the surface of Mars. It has a hydrogen isotopic composition similar to that of Earth. The other meteorite appears to have sampled Martian crust that had been in contact with the Martian atmosphere. Thus, the meteorites represent two very different sources of water. One sampled water from the deep interior and represents the water that existed when Mars formed as a planet, whereas the other sampled the shallow crust and atmosphere.

"There are competing theories that account for the diverse compositions of Martian meteorites," said lead Tomohiro Usui. "Until this study there was no direct evidence that primitive Martian lavas contained material from the surface of Mars."

Because the hydrogen isotopic compositions of the two meteorites differ, the team inferred that martian surface water has had a different geologic history than Martian interior water. Most likely, atmospheric water has preferentially lost the lighter hydrogen isotope to space, and has preferentially retained the heavier hydrogen isotope (deuterium).

That the enriched meteorite has incorporated crustal and atmospheric water could help to solve an important mystery. Are Martian meteorites that are enriched in components, such as water, coming from an enriched, deep mantle, or have they been overprinted by interaction with the Martian crust?

"The hydrogen isotopic composition of the water in the enriched meteorite clearly indicates that they have been overprinted, so this meteorite tells scientists more about the Martian crust than about the Martian mantle," Alexander said. "Conversely, the other meteorite yields more information about the Martian interior."

The concentrations of water in the meteorites are also very different. One has a rather low water concentration and that means that the interior of Mars is rather dry. Conversely, the enriched basalt has 10 times more water than the other one, suggesting that the surface of Mars could have been very wet at one time. Therefore, scientists are now starting to learn which meteorites tell us about the Martian interior and which samples tell us about the Martian surface.

"To understand the geologic history of Mars, more information about both of these environments is needed," Alexander said.

This workwas supported by a NASA Mars Fundamental Research Program grant, a NASA Cosmochemistry Program grant, and by a Astrobiology Institute grant ..

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Conel Alexander | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Laser-wielding physicists seize control of atoms' behavior
06.10.2015 | University of Chicago

nachricht Observing the Unobservable: Researchers Measure Electron Orbitals of Molecules in 3D
05.10.2015 | Karl-Franzens-Universität Graz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...
All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

Laser-wielding physicists seize control of atoms' behavior

06.10.2015 | Physics and Astronomy

Flipping molecular attachments amps up activity of CO2 catalyst

06.10.2015 | Life Sciences

More VideoLinks >>>