Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Martian history: Finding a common denominator with Earth's

20.11.2012
A team of scientists, including Carnegie's Conel Alexander and Jianhua Wang, studied the hydrogen in water from the Martian interior and found that Mars formed from similar building blocks to that of Earth, but that there were differences in the later evolution of the two planets.

This implies that terrestrial planets, including Earth, have similar water sources--chondritic meteorites. However, unlike on Earth, Martian rocks that contain atmospheric volatiles such as water, do not get recycled into the planet's deep interior. Their work will be published in the December 1 issue of Earth and Planetary Science Letters. It is available online.

Much controversy surrounds the origin, abundance and history of water on Mars. The sculpted channels of the Martian southern hemisphere speak loudly of flowing water, but this terrain is ancient. Consequently, planetary scientists often describe early Mars as "warm and wet" and current Mars as "cold and dry."

Debate in the scientific community focuses on how the interior and crust of Mars formed, and how they differ from those of Earth. To investigate the history of Martian water and other volatiles, scientists at NASA's Johnson Space Center in Houston, Carnegie, and the Lunar and Planetary Institute in Houston studied water concentrations and hydrogen isotopic compositions trapped inside crystals within two Martian meteorites. The meteorites, called shergottites, were of the same primitive nature, but one was rich in elements such as hydrogen, whereas the other was depleted.

The meteorites used in the study contain trapped basaltic liquids, and are pristine samples that sampled various Martian volatile element environments. One meteorite appears to have changed little on its way from the Martian mantle up to the surface of Mars. It has a hydrogen isotopic composition similar to that of Earth. The other meteorite appears to have sampled Martian crust that had been in contact with the Martian atmosphere. Thus, the meteorites represent two very different sources of water. One sampled water from the deep interior and represents the water that existed when Mars formed as a planet, whereas the other sampled the shallow crust and atmosphere.

"There are competing theories that account for the diverse compositions of Martian meteorites," said lead Tomohiro Usui. "Until this study there was no direct evidence that primitive Martian lavas contained material from the surface of Mars."

Because the hydrogen isotopic compositions of the two meteorites differ, the team inferred that martian surface water has had a different geologic history than Martian interior water. Most likely, atmospheric water has preferentially lost the lighter hydrogen isotope to space, and has preferentially retained the heavier hydrogen isotope (deuterium).

That the enriched meteorite has incorporated crustal and atmospheric water could help to solve an important mystery. Are Martian meteorites that are enriched in components, such as water, coming from an enriched, deep mantle, or have they been overprinted by interaction with the Martian crust?

"The hydrogen isotopic composition of the water in the enriched meteorite clearly indicates that they have been overprinted, so this meteorite tells scientists more about the Martian crust than about the Martian mantle," Alexander said. "Conversely, the other meteorite yields more information about the Martian interior."

The concentrations of water in the meteorites are also very different. One has a rather low water concentration and that means that the interior of Mars is rather dry. Conversely, the enriched basalt has 10 times more water than the other one, suggesting that the surface of Mars could have been very wet at one time. Therefore, scientists are now starting to learn which meteorites tell us about the Martian interior and which samples tell us about the Martian surface.

"To understand the geologic history of Mars, more information about both of these environments is needed," Alexander said.

This workwas supported by a NASA Mars Fundamental Research Program grant, a NASA Cosmochemistry Program grant, and by a Astrobiology Institute grant ..

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Conel Alexander | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>