Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next Mars Soil Scoop Slated for Last of Lander's Wet Lab Cells

10.09.2008
The next soil sample that NASA's Phoenix Mars Lander will deliver to its deck instruments will go to the fourth of the four cells of Phoenix's wet chemistry laboratory, according to the Phoenix team's current plans.

The chosen source for that sample is from the "Snow White" trench on the eastern end of the work area reachable with Phoenix's robotic arm. In July that trench yielded a sample in which another analytical instrument, the Thermal and Evolved Gas Analyzer, or TEGA, confirmed the presence of water ice. One of the three cells previously used on the wet chemistry laboratory also analyzed a sample from Snow White.

The wet chemistry laboratory mixes Martian soil with purified water brought from Earth as part of its process for identifying soluble nutrients and other chemicals in the soil. Scientists have used it to determine that the soil beside the lander is alkaline and to identify magnesium, sodium, potassium, chloride and perchlorate in the soil.

The Phoenix team plans to fill the last four of eight single-use ovens on the TEGA instrument without waiting for the analysis of each sample to be completed before delivering the next. The strategy is to get as many samples as possible delivered while there is still enough energy available for digging. The northern Martian summer is nearly half over. The amount of sunshine reaching Phoenix's solar panels, and consequently the amount of electricity produced by the panels, is declining.

"Now that the sun is not constantly above the horizon at our landing site we are generating less power every sol," said Phoenix Project Manager Barry Goldstein of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "When we landed in late May, and through much of our mission, we generated about 3,500 watt-hours every sol. We are currently at about 2,500 watt-hours, and sinking daily. With the remaining sols we need to scurry to squeeze the last bit of science out of the mission."

One hundred watt-hours is equivalent to what is needed to illuminate a 100-watt bulb for one hour.

As TEGA bakes samples, it identifies the temperatures at which volatile ingredients in the soil are vaporized. It also has a mass spectrometer to identify the vapors. A valve that controls the flow of a carrier gas for transporting the vapors to the mass spectrometer is no longer reliable, but researchers anticipate that the remaining samples will yield enough vaporized water and carbon dioxide to carry any scarcer vapors to the spectrometer. The team is also examining possible operational workarounds for unanticipated opening of a valve controlling flow of calibration gas.

The Snow White trench is the chosen source for the next sample to go into a TEGA oven, as well as the next sample for the wet chemistry laboratory. For the TEGA sample, the team plans to use a rasp on the robotic arm to churn up ice-rich material from the hard floor of the trench. Ice-rich samples stuck inside the scoop during two attempts in July to deliver them to a TEGA oven. However, a test run on Aug. 30 verified that an ice-rich sample can be delivered using methods that minimize the time the sample is in the scoop and the exposure of the scoop to direct sunlight.

The Phoenix mission is led by Peter Smith at the University of Arizona with project management at NASA's Jet Propulsion Laboratory in Pasadena, Calif., and development partnership at Lockheed Martin in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus in Denmark; the Max Planck Institute in Germany; and the Finnish Meteorological Institute.

MEDIA CONTACTS:

Guy Webster 818-354-6278
Jet Propulsion Laboratory, Pasadena, Calif.
guy.webster@jpl.nasa.gov
Dwayne Brown 202-358-1726
NASA Headquarters, Washington
dwayne.c.brown@nasa.gov
Sara Hammond 520-626-1974
University of Arizona, Tucson
shammond@lpl.arizona.edu

Lori Stiles | University of Arizona
Further information:
http://phoenix.lpl.arizona.edu.ubl
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>