Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next Mars Soil Scoop Slated for Last of Lander's Wet Lab Cells

10.09.2008
The next soil sample that NASA's Phoenix Mars Lander will deliver to its deck instruments will go to the fourth of the four cells of Phoenix's wet chemistry laboratory, according to the Phoenix team's current plans.

The chosen source for that sample is from the "Snow White" trench on the eastern end of the work area reachable with Phoenix's robotic arm. In July that trench yielded a sample in which another analytical instrument, the Thermal and Evolved Gas Analyzer, or TEGA, confirmed the presence of water ice. One of the three cells previously used on the wet chemistry laboratory also analyzed a sample from Snow White.

The wet chemistry laboratory mixes Martian soil with purified water brought from Earth as part of its process for identifying soluble nutrients and other chemicals in the soil. Scientists have used it to determine that the soil beside the lander is alkaline and to identify magnesium, sodium, potassium, chloride and perchlorate in the soil.

The Phoenix team plans to fill the last four of eight single-use ovens on the TEGA instrument without waiting for the analysis of each sample to be completed before delivering the next. The strategy is to get as many samples as possible delivered while there is still enough energy available for digging. The northern Martian summer is nearly half over. The amount of sunshine reaching Phoenix's solar panels, and consequently the amount of electricity produced by the panels, is declining.

"Now that the sun is not constantly above the horizon at our landing site we are generating less power every sol," said Phoenix Project Manager Barry Goldstein of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "When we landed in late May, and through much of our mission, we generated about 3,500 watt-hours every sol. We are currently at about 2,500 watt-hours, and sinking daily. With the remaining sols we need to scurry to squeeze the last bit of science out of the mission."

One hundred watt-hours is equivalent to what is needed to illuminate a 100-watt bulb for one hour.

As TEGA bakes samples, it identifies the temperatures at which volatile ingredients in the soil are vaporized. It also has a mass spectrometer to identify the vapors. A valve that controls the flow of a carrier gas for transporting the vapors to the mass spectrometer is no longer reliable, but researchers anticipate that the remaining samples will yield enough vaporized water and carbon dioxide to carry any scarcer vapors to the spectrometer. The team is also examining possible operational workarounds for unanticipated opening of a valve controlling flow of calibration gas.

The Snow White trench is the chosen source for the next sample to go into a TEGA oven, as well as the next sample for the wet chemistry laboratory. For the TEGA sample, the team plans to use a rasp on the robotic arm to churn up ice-rich material from the hard floor of the trench. Ice-rich samples stuck inside the scoop during two attempts in July to deliver them to a TEGA oven. However, a test run on Aug. 30 verified that an ice-rich sample can be delivered using methods that minimize the time the sample is in the scoop and the exposure of the scoop to direct sunlight.

The Phoenix mission is led by Peter Smith at the University of Arizona with project management at NASA's Jet Propulsion Laboratory in Pasadena, Calif., and development partnership at Lockheed Martin in Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus in Denmark; the Max Planck Institute in Germany; and the Finnish Meteorological Institute.

MEDIA CONTACTS:

Guy Webster 818-354-6278
Jet Propulsion Laboratory, Pasadena, Calif.
guy.webster@jpl.nasa.gov
Dwayne Brown 202-358-1726
NASA Headquarters, Washington
dwayne.c.brown@nasa.gov
Sara Hammond 520-626-1974
University of Arizona, Tucson
shammond@lpl.arizona.edu

Lori Stiles | University of Arizona
Further information:
http://phoenix.lpl.arizona.edu.ubl
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>