Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Express observes aurorae on the Red Planet

21.11.2008
Scientists using ESA’s Mars Express have produced the first crude map of aurorae on Mars. These displays of ultraviolet light appear to be located close to the residual magnetic fields generated by Mars’s crustal rocks. They highlight a number of mysteries about the way Mars interacts with electrically charged particles originating from the Sun.

The aurorae on Mars were discovered in 2004 using the SPICAM ultraviolet and infrared atmospheric spectrometer on board Mars Express. They are a powerful tool with which scientists can investigate the composition and structure of the Red Planet’s atmosphere.

Now Francois Leblanc, from the Service d’Aéronomie, IPSL/CNRS, France and colleagues have announced the results of coordinated observation campaigns using SPICAM, the MARSIS sub-surface sounding radar altimeter’s radar, and the energetic neutral atoms analyser, ASPERA’s electron spectrometer on Mars Express.

They have observed nine new auroral emission events, which have allowed them to make the first crude map of auroral activity on Mars. They see that the aurorae seem to be located near regions where the martian magnetic field is the strongest. MARSIS had previously observed higher-than-expected electrons in similar regions. This suggests, although it does not prove, that the magnetic fields help to create the aurorae.

On Earth, aurorae are more commonly known as the northern and southern lights. They are confined to the polar regions and shine brightly at visible as well as ultraviolet wavelengths. The existence of similar aurorae is well known on the giant planets of the Solar System. They occur wherever a planet’s magnetic field channels electrically charged particles into the atmosphere.

In all of these planets, the magnetic fields are large-scale structures generated deep in the interior of the planet. Mars lacks such a large-scale internal mechanism. Instead, it just generates small pockets of magnetism where areas of rocks in the crust of Mars are themselves magnetic. This results in many magnetic pole-type regions all over Mars.

The aurorae are caused by charged particles, in this case most probably electrons, colliding with molecules in the atmosphere. The electrons almost certainly come from the Sun, which constantly blows out electrically charged particles into space. Known as the solar wind, this constant stream of particles provides the source of electrons to generate the aurorae, as suggested by MARSIS and ASPERA.

But how the electrons are accelerated to sufficiently high energies to spark aurorae on Mars remains a mystery. “It may be that magnetic fields on Mars connect with the solar wind, providing a road for the electrons to travel along,” says Leblanc.

Any future astronauts expecting a spectacular light show, similar to aurorae on Earth, may be in for a disappointment. “We’re not sure whether the aurorae will be bright enough to be observed at visible wavelengths,” says Leblanc.

This is because the molecules responsible for the visible light show on Earth – molecular and atomic oxygen and molecular nitrogen – are not abundant enough in the martian atmosphere. SPICAM is designed to work at ultraviolet wavelengths and cannot see whether visible light is being emitted as well.

Nevertheless, there is plenty of work for the scientists to do. “There's now a large domain of physics that we have to explore in order to understand the aurorae on Mars. Thanks to Mars Express we have a lot of very good measurements to work with,” says Leblanc.

Agustin Chicarro | alfa
Further information:
http://www.esa.int/SPECIALS/Mars_Express/SEMY1B5DHNF_0.html

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>