How Mars' atmosphere got so thin: New insights from Curiosity

“The beauty of these measurements lies in the fact that these are the first really high-precision measurements of the composition of Mars' atmosphere,” said Sushil Atreya, professor of atmospheric, oceanic and space sciences at the University of Michigan.

Atreya is co-author of two related papers published in the July 19 issue of Science, and co-investigator on Curiosity's Sample Analysis at Mars (SAM) suite of instruments, considered the rover's cornerstone lab.

SAM measured the abundances of different gases and isotopes in samples of Martian air, according to NASA. Isotopes are variations of the same chemical element that contain different numbers of neutrons, such as the most common carbon isotope, carbon-12, and a heavier stable isotope, carbon-13, which contains an additional neutron.

SAM analyzed the ratios of heavier to lighter isotopes of carbon and oxygen in the carbon dioxide that makes up most of Mars' atmosphere today. Measurements showed that heavy isotopes of carbon and oxygen were more abundant in today's thin atmosphere compared with the proportions in the raw material that formed the planet (which scientists can deduce from proportions in the sun and other parts of the solar system.) This provides not only supportive evidence for the loss of much of Mars' original atmosphere, but also gives clues to how the loss occurred. It suggests that the planet's atmosphere escaped from the top, rather than due to the lower atmosphere interacting with the ground, NASA's web story states.

“The isotope data are unambiguous and robust, having been independently confirmed by the quadrupole mass spectrometer and the tunable laser spectrometer, two of the SAM suite instruments,” Atreya said. “These data are clear evidence of a substantially more massive atmosphere, hence a warmer, wetter Mars in the past than the cold, arid planet we find today.”

Curiosity landed inside Mars' Gale Crater on Aug. 6, 2012, Universal Time.

For the full NASA story, see: http://www.nasa.gov/mission_pages/msl/news/msl20130718.html

Sushil Atreya: http://www-personal.umich.edu/~atreya

A Laboratory on Mars multimedia story: http://www.engin.umich.edu/college/about/news/dme/mars/#/earth

Media Contact

Nicole Casal Moore EurekAlert!

More Information:

http://www.umich.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors