Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Map of universe questioned; dwarf galaxies don't fit standard model

11.06.2014

Structure, behavior better explained by galaxy collisions

Dwarf galaxies that orbit the Milky Way and the Andromeda galaxies defy the accepted model of galaxy formation, and recent attempts to wedge them into the model are flawed, reports an international team of astrophysicists.


An optical image of the "Tadpole" galaxy, an interacting galaxy, taken by the Hubble Space Telescope. Material stripped from the galaxy during its collision with a smaller galaxy (seen in the upper left corner of the larger interaction partner) forms a long tidal tail. Young blue stars, star clusters and tidal dwarf galaxies are born in these tidal debris. These objects move in a common direction within a plane defined by the orientation and motion of their tidal tail. A similar galaxy interaction might have occurred in the Local Group in the past, which could explain the distribution of dwarf galaxies in co-rotating planes.

Credit: NASA, Holland Ford (JHU), the ACS Science Team and ESA

David Merritt, professor of astrophysics at Rochester Institute of Technology, co-authored "Co-orbiting satellite galaxy structures are still in conflict with the distribution of primordial dwarf galaxies," to be published in an upcoming issue of Monthly Notices of the Royal Astronomical Society. A pre-print of the paper is available online at http://arxiv.org/abs/1406.1799.

The study pokes holes in the current understanding of galaxy formation and questions the accepted model of the origin and evolution of the universe. According to the standard paradigm, 23 percent of the mass of the universe is shaped by invisible particles known as dark matter.

"The model predicts that dwarf galaxies should form inside of small clumps of dark matter and that these clumps should be distributed randomly about their parent galaxy," Merritt said. "But what is observed is very different. The dwarf galaxies belonging to the Milky Way and Andromeda are seen to be orbiting in huge, thin disk-like structures."

The study, led by Marcel Pawlowski at Case Western Reserve University, critiques three recent papers by different international teams, all of which concluded that the satellite galaxies support the standard model. The critique by Merritt and his colleagues found "serious issues" with all three studies.

The team of 14 scientists from six different countries replicated the earlier analyses using the same data and cosmological simulations and came up with much lower probabilities—roughly one tenth of a percent—that such structures would be seen in the Milky Way and the Andromeda galaxy.

"The earlier papers found structures in the simulations that no one would say really looked very much like the observed planar structures," said Merritt.

In their paper, Merritt and his co-authors write that, "Either the selection of model satellites is different from that of the observed ones, or an incomplete set of observational constraints has been considered, or the observed satellite distribution is inconsistent with basic assumptions. Once these issues have been addressed, the conclusions are different: Features like the observed planar structures are very rare."

The standard cosmological model is the frame of reference for many generations of scientists, some of whom are beginning to question its ability to accurately reproduce what is observed in the nearby universe. Merritt counts himself among the small and growing group that is questioning the accepted paradigm.

"Our conclusion tends to favor an alternate, and much older, model: that the satellites were pulled out from another galaxy when it interacted with the Local Group galaxies in the distant past," he said. "This 'tidal' model can naturally explain why the observed satellites are orbiting in thin disks."

Scientific progress embraces challenges to upheld theories and models for a reason, Merritt notes.

"When you have a clear contradiction like this, you ought to focus on it," Merritt said. "This is how progress in science is made."

###

CONTACT: David Merritt can be reached at merritt@astro.rit.edu or 585-730-3847.

IMAGE: An optical image of the "Tadpole" galaxy, an interacting galaxy, taken by the Hubble Space Telescope. Material stripped from the galaxy during its collision with a smaller galaxy (seen in the upper left corner of the larger interaction partner) forms a long tidal tail. Young blue stars, star clusters and tidal dwarf galaxies are born in these tidal debris. These objects move in a common direction within a plane defined by the orientation and motion of their tidal tail. A similar galaxy interaction might have occurred in the Local Group in the past, which could explain the distribution of dwarf galaxies in co-rotating planes.

UGC 10214 ("The Tadpole"): http://www.spacetelescope.org/images/heic0206a/
Credit: NASA, Holland Ford (JHU), the ACS Science Team and ESA

MOVIE: Movie of a computer simulation modeling the merger of two galaxies. The remnant galaxy is similar to our neighboring Andromeda galaxy. Debris from the collision is expelled in long tidal tails, along which tidal dwarf galaxies form. These orbit in a common plane, because they follow the motion of the tidal tail. This might explain the satellite galaxy planes around the Milky Way and Andromeda.

http://youtu.be/mycvWNcSfNw
Credit: Observatoire de Paris / GEPI / François Hammer et al.

Susan Gawlowicz | Eurek Alert!

Further reports about: Andromeda Technology dwarf galaxies satellite satellites structures

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>