Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Map of universe questioned; dwarf galaxies don't fit standard model

11.06.2014

Structure, behavior better explained by galaxy collisions

Dwarf galaxies that orbit the Milky Way and the Andromeda galaxies defy the accepted model of galaxy formation, and recent attempts to wedge them into the model are flawed, reports an international team of astrophysicists.


An optical image of the "Tadpole" galaxy, an interacting galaxy, taken by the Hubble Space Telescope. Material stripped from the galaxy during its collision with a smaller galaxy (seen in the upper left corner of the larger interaction partner) forms a long tidal tail. Young blue stars, star clusters and tidal dwarf galaxies are born in these tidal debris. These objects move in a common direction within a plane defined by the orientation and motion of their tidal tail. A similar galaxy interaction might have occurred in the Local Group in the past, which could explain the distribution of dwarf galaxies in co-rotating planes.

Credit: NASA, Holland Ford (JHU), the ACS Science Team and ESA

David Merritt, professor of astrophysics at Rochester Institute of Technology, co-authored "Co-orbiting satellite galaxy structures are still in conflict with the distribution of primordial dwarf galaxies," to be published in an upcoming issue of Monthly Notices of the Royal Astronomical Society. A pre-print of the paper is available online at http://arxiv.org/abs/1406.1799.

The study pokes holes in the current understanding of galaxy formation and questions the accepted model of the origin and evolution of the universe. According to the standard paradigm, 23 percent of the mass of the universe is shaped by invisible particles known as dark matter.

"The model predicts that dwarf galaxies should form inside of small clumps of dark matter and that these clumps should be distributed randomly about their parent galaxy," Merritt said. "But what is observed is very different. The dwarf galaxies belonging to the Milky Way and Andromeda are seen to be orbiting in huge, thin disk-like structures."

The study, led by Marcel Pawlowski at Case Western Reserve University, critiques three recent papers by different international teams, all of which concluded that the satellite galaxies support the standard model. The critique by Merritt and his colleagues found "serious issues" with all three studies.

The team of 14 scientists from six different countries replicated the earlier analyses using the same data and cosmological simulations and came up with much lower probabilities—roughly one tenth of a percent—that such structures would be seen in the Milky Way and the Andromeda galaxy.

"The earlier papers found structures in the simulations that no one would say really looked very much like the observed planar structures," said Merritt.

In their paper, Merritt and his co-authors write that, "Either the selection of model satellites is different from that of the observed ones, or an incomplete set of observational constraints has been considered, or the observed satellite distribution is inconsistent with basic assumptions. Once these issues have been addressed, the conclusions are different: Features like the observed planar structures are very rare."

The standard cosmological model is the frame of reference for many generations of scientists, some of whom are beginning to question its ability to accurately reproduce what is observed in the nearby universe. Merritt counts himself among the small and growing group that is questioning the accepted paradigm.

"Our conclusion tends to favor an alternate, and much older, model: that the satellites were pulled out from another galaxy when it interacted with the Local Group galaxies in the distant past," he said. "This 'tidal' model can naturally explain why the observed satellites are orbiting in thin disks."

Scientific progress embraces challenges to upheld theories and models for a reason, Merritt notes.

"When you have a clear contradiction like this, you ought to focus on it," Merritt said. "This is how progress in science is made."

###

CONTACT: David Merritt can be reached at merritt@astro.rit.edu or 585-730-3847.

IMAGE: An optical image of the "Tadpole" galaxy, an interacting galaxy, taken by the Hubble Space Telescope. Material stripped from the galaxy during its collision with a smaller galaxy (seen in the upper left corner of the larger interaction partner) forms a long tidal tail. Young blue stars, star clusters and tidal dwarf galaxies are born in these tidal debris. These objects move in a common direction within a plane defined by the orientation and motion of their tidal tail. A similar galaxy interaction might have occurred in the Local Group in the past, which could explain the distribution of dwarf galaxies in co-rotating planes.

UGC 10214 ("The Tadpole"): http://www.spacetelescope.org/images/heic0206a/
Credit: NASA, Holland Ford (JHU), the ACS Science Team and ESA

MOVIE: Movie of a computer simulation modeling the merger of two galaxies. The remnant galaxy is similar to our neighboring Andromeda galaxy. Debris from the collision is expelled in long tidal tails, along which tidal dwarf galaxies form. These orbit in a common plane, because they follow the motion of the tidal tail. This might explain the satellite galaxy planes around the Milky Way and Andromeda.

http://youtu.be/mycvWNcSfNw
Credit: Observatoire de Paris / GEPI / François Hammer et al.

Susan Gawlowicz | Eurek Alert!

Further reports about: Andromeda Technology dwarf galaxies satellite satellites structures

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>