Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Map of mysterious molecules in our galaxy sheds new light on century-old puzzle

09.01.2015

By analyzing the light of hundreds of thousands of celestial objects, Johns Hopkins astronomers from the Sloan Digital Sky Survey (SDSS) have created a unique map of enigmatic molecules in our galaxy that are responsible for puzzling features in the light from stars.

The map, which can be viewed at http://is.gd/dibmap, was unveiled Jan. 8 at the 225th meeting of the American Astronomical Society in Seattle.


This is a map of diffuse interstellar bands in the Milky Way.

Credit: T.W. Lan, G. Zasowski, B. Meacutenard, SDSS and 2MASS/UMass/IPAC-Caltech/NASA/NSF

"Seeing where these mysterious molecules are located is fascinating," said Brice Ménard, a professor in the Department of Physics & Astronomy at The Johns Hopkins University.

Gail Zasowski, another Johns Hopkins astronomer who played a key role in the project, added, "This new map required analyzing huge amounts of data and using the power of statistical analyses."

These puzzling features in the light from stars, which astronomers call "Diffuse Interstellar Bands" (DIBs), have been a mystery ever since they were discovered by astronomer Mary Lea Heger of Lick Observatory in 1922. While analyzing the light from stars, she found unexpected lines that were created by something existing in the interstellar space between the stars and the Earth.

Further research showed that these mysterious lines were due to a variety of molecules. But exactly which of many thousands of possible molecules are responsible for these features has remained a mystery for almost a century.

This new map, based on SDSS data that reveals the location of these enigmatic molecules, was compiled from two parallel studies.

Zasowski, a postdoctoral fellow, led one team that focused on the densest parts of our galaxy, using infrared observations that can cut through the dust clouds and reach previously obscured stars. Johns Hopkins graduate student Ting-Wen Lan led the other study, which used visible light to detect the mysterious molecules located above the plane of the galaxy, where their signatures are very weak and harder to measure.

"We do not have a full map yet, but we can already see a lot of interesting patterns," said Ménard, who worked on both teams.

Lan's team analyzed the light from more than half a million stars, galaxies, and quasars to detect the molecules' features in the regions well above and beyond the Milky Way's disk. In addition, the team was able to see the types of environments in which these molecules are more likely to be found. Some molecules like dense regions of gas and dust, and others prefer the lonelier spots far away from stars.

"These results will guide researchers toward the best observations and laboratory experiments to pin down the properties and nature of these enigmatic molecules," Lan said.

To look toward the galactic plane, hidden behind thick clouds of cosmic dust, Zasowski's team used data from the SDSS's APOGEE survey. APOGEE observations, which make use of infrared light, can easily see through interstellar dust and measure the properties of stars all over the galaxy.

The team members detected some of the mysterious features in front of about 60,000 stars in a wide range of environments and were even able to measure the motion of these molecules. "For the first time, we can see how these mysterious molecules are moving around the galaxy," Zasowski said. "This is extremely useful and brings in new connections between these molecules and the dynamics of the Milky Way."

All the recent findings concerning these mysterious features paint a picture of tough little molecules that can exist in a variety of environments, all over the galaxy.

"Almost a hundred years after their discovery, the exact nature of these molecules still remains a mystery, but we are getting one step closer to understanding what they are made of," Ménard said. "The era of Big Data in astronomy allows us to look at the universe in new ways. There is so much to explore with these large datasets. This is just the beginning."

###

The researchers used data from the Sloan Digital Sky Survey. The work was supported by National Science Foundation Grant AST-1109665 and NSF postdoctoral fellowship AST-1203017.

Photos of the researchers available; contact Phil Sneiderman.

Related links:

Brice Ménard's website: http://www.pha.jhu.edu/~menard/

Gail Zasowski's website: http://www.pha.jhu.edu/~zasowski/

Ting-Wen Lan's website: : http://www.pha.jhu.edu/~tlan

Johns Hopkins' Department of Physics and Astronomy: http://physics-astronomy.jhu.edu/

Phil Sneiderman | EurekAlert!

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>