Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating superconducting plasma waves with terahertz light

12.07.2016

Terahertz illumination amplifies Josephson plasma waves in high temperature superconductors, potentially paving the way for stabilizing fluctuating superconductivity

Most systems in nature are inherently nonlinear, meaning that their response to any external excitation is not proportional to the strength of the applied stimulus. Nonlinearities are observed, for example, in macroscopic phenomena such as the flow of fluids like water and air or of currents in electronic circuits.


Josephson plasma wave in a layered superconductor, parametrically amplified through a strong terahertz light pulse.

Image: J.M. Harms/MPI for the Structure and Dynamics of Matter

Manipulating the nonlinear behavior is therefore inherently interesting for achieving control over several processes. An international team of researchers led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg utilized the nonlinear interaction between a terahertz light field and a superconducting plasma wave in a high temperature cuprate superconductor to amplify the latter.

This resulted in a more coherent superconductor, which is less susceptible to thermal fluctuations. Due to the non-dissipative superconducting nature of the plasma wave, the study opens up new avenues for “plasmonics”, a field of science utilizing plasma waves for transmitting information. These findings are reported in the journal Nature Physics.

The Josephson effect

The Josephson effect, predicted by Brian D. Josephson in 1962, consists in the tunneling of Cooper pairs across a thin, insulating junction between two superconductors. This superconductor-insulator-superconductor structure is called a Josephson junction. This theory was soon experimentally confirmed and in 1973 Josephson received the Nobel Prize in Physics, as his prediction resulted in the verification of the macroscopic quantum nature of superconductors.

The charge dynamics in Josephson junctions is governed by the Josephson equations, which state that the current associated with the tunneling Cooper pairs is proportional to the sine of the phase difference between the two superconductors. Under an applied voltage, the current oscillates at a frequency that depends on the voltage drop at the junction.

The Josephson effect not only resulted in fundamental advances in physics but also in many applications including so-called SQUIDs, i.e. very sensitive magnetometers that are used to measure extremely weak magnetic fields. These are used, for instance, in medicine for mapping brain activity (magnetoencephalography). Moreover, Josephson junctions are nowadays employed as an extremely precise voltage standard, because the Josephson effect is a quantum effect that relates voltages and frequencies (or time) by a proportionality involving only fundamental constants.

Current research topics utilizing the Josephson effect include the realization of qubits for quantum computing and photonic devices in the gigahertz (GHz) and terahertz (THz) frequency regime.

Josephson plasma waves in cuprate superconductors

Layered superconductors like high-Tc cuprates – being built of alternating superconducting and insulating planes – are a nanoscale version of a stack of Josephson junctions. In these materials, superconducting transport first occurs in the copper-oxygen planes, while three-dimensional superconductivity emerges via Josephson tunneling in the direction perpendicular to the planes.

In analogy to Maxwell’s equations in electrodynamics, whose temporal and spatial dependence results in electromagnetic waves, the Josephson relations result in the so-called Josephson plasma waves. The frequency of these waves falls into the THz range for cuprate materials and can therefore be observed with conventional THz spectroscopy.

The team around Andrea Cavalleri used THz radiation to probe Josephson plasma waves in barium-doped lanthanum copper oxide (La1.905Ba0.095CuO4). From the reflection of the probe pulse they could detect oscillations at about half a THz frequency. “When we irradiated the superconductor with our weak probe pulses, we could observe oscillations of the reflected field at a specific frequency, the so-called Josephson plasma frequency,” says Srivats Rajasekaran, first author of the paper and postdoc at the MPSD in Hamburg.

Nonlinearities of Josephson plasma waves and parametric amplification

Since the Josephson plasma waves are governed by the Josephson relations, they are inherently nonlinear. In the current study, these Josephson plasma waves were driven into a highly nonlinear regime using an additional intense THz pump pulse with very large field strengths of up to 100 kV/cm. This was made possible by exploiting the recent advances in THz technology. In this regime, amplification of the Josephson plasma wave was observed experimentally. “The reflectivity of the sample became larger than 100% and, on top of that, the absorption coefficient became negative. These are clear indications of amplification occurring inside the material,” explains Srivats Rajasekaran.

Parametric amplification in simple oscillating systems, achieved by periodically modulating some specific parameter, is a well-understood phenomenon. For instance, a child on a swing increases its oscillation amplitude by periodically raising and lowering its center of mass. An example from electronics is an LC circuit with periodically varied capacitance or inductance. Parametric amplifiers of this type have applications in the enhancement of weak signals without increasing its noise (used e.g. in radio astronomy). “When it comes to parametric amplification, a layered superconductor acts very much like an LC circuit,” says Srivats Rajasekaran. “The Josephson supercurrent is like a wire connecting the plates of a capacitor – the copper oxide layers.” The inductance of the supercurrent depends on the phase difference between the layers, and this phase difference varies with time and position on the plane.

“When we applied our intense pump pulse, the pump-probe response oscillated at twice the Josephson plasma frequency. This is equivalent to modulating the inductance periodically, which is required for parametric amplification,” adds Srivats Rajasekaran. “This is the first time that the effect of parametric amplification by light irradiation has been demonstrated for Josephson plasma waves,” declares Andrea Cavalleri, director at the MPSD in Hamburg.

Potential Applications

Amplification of Josephson plasma waves, exploiting the nonlinear Josephson relations with THz pulses, falls in the category of the previous works led by Andrea Cavalleri on layered superconductors, wherein THz light was utilized to switch off and on superconductivity between the planes and to generate superconducting solitons. In addition, this work has implications in the control of fluctuations of the superfluid. “The possibility to parametrically control the superfluid in layered superconductors might eventually provide a tool to stabilize fluctuating superconductivity, perhaps even for temperatures above the critical temperature,” concludes Andrea Cavalleri.

The study was made possible by the ERC Synergy Grant “Frontiers in Quantum Materials’ Control” (Q-MAC) that brings together scientists of the MPSD, Oxford University and further research institutions. The research team also involved scientists of the Brookhaven National Laboratory, the University of Bath and the National University of Singapore. The Center for Free-Electron Laser Science (CFEL) is a joint enterprise of DESY, the Max Planck Society and the University of Hamburg.

Contact persons:

Dr. Srivats Rajasekaran
Max Planck Institute for the Structure and Dynamics of Matter
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-6559
srivats.rajasekaran@mpsd.mpg.de

Prof. Dr. Andrea Cavalleri
Max Planck Institute for the Structure and Dynamics of Matter
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-5354
andrea.cavalleri@mpsd.mpg.de

Original publication:

S. Rajasekaran, E. Casandruc, Y. Laplace, D. Nicoletti, G. D. Gu, S. R. Clark, D. Jaksch, and A. Cavalleri, “Parametric Amplification of a Superconducting Plasma Wave,” Nature Physics, Advance Online Publication, (July 11, 2016), DOI: 10.1038/nphys3819

Weitere Informationen:

http://dx.doi.org/10.1038/nphys3819 Original publication
http://qcmd.mpsd.mpg.de/ Research group of Prof. Dr. Andrea Cavalleri
http://www.mpsd.mpg.de/en Max Planck Institute for the Structure and Dynamics of Matter

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>