Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Manipulating superconducting plasma waves with terahertz light


Terahertz illumination amplifies Josephson plasma waves in high temperature superconductors, potentially paving the way for stabilizing fluctuating superconductivity

Most systems in nature are inherently nonlinear, meaning that their response to any external excitation is not proportional to the strength of the applied stimulus. Nonlinearities are observed, for example, in macroscopic phenomena such as the flow of fluids like water and air or of currents in electronic circuits.

Josephson plasma wave in a layered superconductor, parametrically amplified through a strong terahertz light pulse.

Image: J.M. Harms/MPI for the Structure and Dynamics of Matter

Manipulating the nonlinear behavior is therefore inherently interesting for achieving control over several processes. An international team of researchers led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg utilized the nonlinear interaction between a terahertz light field and a superconducting plasma wave in a high temperature cuprate superconductor to amplify the latter.

This resulted in a more coherent superconductor, which is less susceptible to thermal fluctuations. Due to the non-dissipative superconducting nature of the plasma wave, the study opens up new avenues for “plasmonics”, a field of science utilizing plasma waves for transmitting information. These findings are reported in the journal Nature Physics.

The Josephson effect

The Josephson effect, predicted by Brian D. Josephson in 1962, consists in the tunneling of Cooper pairs across a thin, insulating junction between two superconductors. This superconductor-insulator-superconductor structure is called a Josephson junction. This theory was soon experimentally confirmed and in 1973 Josephson received the Nobel Prize in Physics, as his prediction resulted in the verification of the macroscopic quantum nature of superconductors.

The charge dynamics in Josephson junctions is governed by the Josephson equations, which state that the current associated with the tunneling Cooper pairs is proportional to the sine of the phase difference between the two superconductors. Under an applied voltage, the current oscillates at a frequency that depends on the voltage drop at the junction.

The Josephson effect not only resulted in fundamental advances in physics but also in many applications including so-called SQUIDs, i.e. very sensitive magnetometers that are used to measure extremely weak magnetic fields. These are used, for instance, in medicine for mapping brain activity (magnetoencephalography). Moreover, Josephson junctions are nowadays employed as an extremely precise voltage standard, because the Josephson effect is a quantum effect that relates voltages and frequencies (or time) by a proportionality involving only fundamental constants.

Current research topics utilizing the Josephson effect include the realization of qubits for quantum computing and photonic devices in the gigahertz (GHz) and terahertz (THz) frequency regime.

Josephson plasma waves in cuprate superconductors

Layered superconductors like high-Tc cuprates – being built of alternating superconducting and insulating planes – are a nanoscale version of a stack of Josephson junctions. In these materials, superconducting transport first occurs in the copper-oxygen planes, while three-dimensional superconductivity emerges via Josephson tunneling in the direction perpendicular to the planes.

In analogy to Maxwell’s equations in electrodynamics, whose temporal and spatial dependence results in electromagnetic waves, the Josephson relations result in the so-called Josephson plasma waves. The frequency of these waves falls into the THz range for cuprate materials and can therefore be observed with conventional THz spectroscopy.

The team around Andrea Cavalleri used THz radiation to probe Josephson plasma waves in barium-doped lanthanum copper oxide (La1.905Ba0.095CuO4). From the reflection of the probe pulse they could detect oscillations at about half a THz frequency. “When we irradiated the superconductor with our weak probe pulses, we could observe oscillations of the reflected field at a specific frequency, the so-called Josephson plasma frequency,” says Srivats Rajasekaran, first author of the paper and postdoc at the MPSD in Hamburg.

Nonlinearities of Josephson plasma waves and parametric amplification

Since the Josephson plasma waves are governed by the Josephson relations, they are inherently nonlinear. In the current study, these Josephson plasma waves were driven into a highly nonlinear regime using an additional intense THz pump pulse with very large field strengths of up to 100 kV/cm. This was made possible by exploiting the recent advances in THz technology. In this regime, amplification of the Josephson plasma wave was observed experimentally. “The reflectivity of the sample became larger than 100% and, on top of that, the absorption coefficient became negative. These are clear indications of amplification occurring inside the material,” explains Srivats Rajasekaran.

Parametric amplification in simple oscillating systems, achieved by periodically modulating some specific parameter, is a well-understood phenomenon. For instance, a child on a swing increases its oscillation amplitude by periodically raising and lowering its center of mass. An example from electronics is an LC circuit with periodically varied capacitance or inductance. Parametric amplifiers of this type have applications in the enhancement of weak signals without increasing its noise (used e.g. in radio astronomy). “When it comes to parametric amplification, a layered superconductor acts very much like an LC circuit,” says Srivats Rajasekaran. “The Josephson supercurrent is like a wire connecting the plates of a capacitor – the copper oxide layers.” The inductance of the supercurrent depends on the phase difference between the layers, and this phase difference varies with time and position on the plane.

“When we applied our intense pump pulse, the pump-probe response oscillated at twice the Josephson plasma frequency. This is equivalent to modulating the inductance periodically, which is required for parametric amplification,” adds Srivats Rajasekaran. “This is the first time that the effect of parametric amplification by light irradiation has been demonstrated for Josephson plasma waves,” declares Andrea Cavalleri, director at the MPSD in Hamburg.

Potential Applications

Amplification of Josephson plasma waves, exploiting the nonlinear Josephson relations with THz pulses, falls in the category of the previous works led by Andrea Cavalleri on layered superconductors, wherein THz light was utilized to switch off and on superconductivity between the planes and to generate superconducting solitons. In addition, this work has implications in the control of fluctuations of the superfluid. “The possibility to parametrically control the superfluid in layered superconductors might eventually provide a tool to stabilize fluctuating superconductivity, perhaps even for temperatures above the critical temperature,” concludes Andrea Cavalleri.

The study was made possible by the ERC Synergy Grant “Frontiers in Quantum Materials’ Control” (Q-MAC) that brings together scientists of the MPSD, Oxford University and further research institutions. The research team also involved scientists of the Brookhaven National Laboratory, the University of Bath and the National University of Singapore. The Center for Free-Electron Laser Science (CFEL) is a joint enterprise of DESY, the Max Planck Society and the University of Hamburg.

Contact persons:

Dr. Srivats Rajasekaran
Max Planck Institute for the Structure and Dynamics of Matter
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
+49 (0)40 8998-6559

Prof. Dr. Andrea Cavalleri
Max Planck Institute for the Structure and Dynamics of Matter
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
+49 (0)40 8998-5354

Original publication:

S. Rajasekaran, E. Casandruc, Y. Laplace, D. Nicoletti, G. D. Gu, S. R. Clark, D. Jaksch, and A. Cavalleri, “Parametric Amplification of a Superconducting Plasma Wave,” Nature Physics, Advance Online Publication, (July 11, 2016), DOI: 10.1038/nphys3819

Weitere Informationen: Original publication Research group of Prof. Dr. Andrea Cavalleri Max Planck Institute for the Structure and Dynamics of Matter

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>



Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

More VideoLinks >>>