Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Manifold Path to Millisecond Pulsars

16.12.2013
Two astronomers from Bonn have proposed a new path for the formation of a newly discovered class of millisecond pulsars with similar orbital periods and eccentricities.

In the scenario of Paulo Freire and Thomas Tauris, a massive white dwarf star accretes matter and angular momentum from a normal companion star and grows beyond the critical Chandrasekhar mass limit.


MPIfR’s 100-m radio telescope near Bad Effelsberg seen from the visitors’ pavilion. The milli-second pulsar PSR J1946+3417 is one of 14 new pulsars recently discovered with this telescope

MPIfR/Norbert Junkes


The final path of close binary stellar evolution according to the new scenario, starting with an X-ray binary with an accreting white dwarf and leading to a millisecond pulsar with a low-mass

Paulo Freire & Thomas Tauris

The new hypothesis makes several testable predictions about this recently discovered sub-class of millisecond pulsars. If confirmed, it opens up new avenues of research into the physics of stars, in particular the momentum kicks and mass loss associated with accretion induced collapse of massive white dwarfs.

Neutron stars can spin very fast – with a record value of 716 rotations per second. Such extreme objects are known as millisecond pulsars. Ever since their first discovery in 1982, it has been thought that they are old dead neutron stars that are lucky enough to be in binary star system.

As the companion evolves, it starts transferring matter onto the neutron star, spinning it up. This sort of system is known as an X-ray binary. Eventually the companion evolves into a white dwarf star, accretion stops and the neutron star becomes a millisecond pulsar, detectable through its radio pulsations. The orbits of these systems have very low eccentricities, meaning their orbits are extremely close to being perfect circles.

This is a consequence of the tidal circularization that happens during the mass transfer stage. Such a scenario has been confirmed both in theoretical work and in the discovery of several systems in different stages of their evolution from X-ray binaries to millisecond pulsars.

However, recent discoveries like PSR J1946+3417 are hinting at the possibility of different formation paths to millisecond pulsars. This source is among 14 new pulsars recently discovered with the Effelsberg 100-m radio telescope. Spinning 315 times per second, this is clearly a millisecond pulsar; however, its orbital eccentricity is 4 orders of magnitude larger than other systems with a similar orbital period. Its companion mass is about 0.24 solar masses, most likely a helium white dwarf. Interestingly enough, at about the same time, two systems with similar parameters were discovered using the Arecibo 305 m radio telescope.

It is quite possible that these binary systems started their evolution as triple systems which became dynamically unstable, as in the case of PSR J1903+0327, the first millisecond pulsar with an eccentric orbit. However, this process generates a wide variety of orbital periods, eccentricities and companion masses, quite unlike the three new discoveries, which are in everything very similar.

The new hypothesis includes the collapse of a massive white dwarf after accretion has terminated. It explains not only the similarity of eccentricities and companion masses, but also their values. "I was surprised when we looked at the calculated orbital periods and eccentricities predicted by our model", says Thomas Tauris, affiliated with both, Argelander-Institut für Astronomie & Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn. "It gives an exact match with the observations! Thus I knew then we were on to something, although small number statistics could still be at work."

The new theory builds on previous extensive computational work lead by Tauris. It makes a prediction for the new type of systems: they should have orbital periods between 10 and 60 days, but with a concentration towards the middle of that range, almost exactly as observed for the new systems.

"Our new approach is very elegant", says the lead author, Paulo Freire from MPIfR. "But whether Nature is really making millisecond pulsars this way is not known yet.''

For the next few years, the pulsar team at the Fundamental Physics In Radio Astronomy Group at MPIfR will be involved in testing the predictions of this scenario, particularly by doing optical follow-up studies and by making precise mass measurements of the pulsars and their companions, a key feature of this study. They will also attempt to find more of these pulsar systems using the Effelsberg radio telescope.

"The neat thing is that if the theory passes these tests, it will allow us to learn much more about the kicks and mass loss associated with accretion induced supernovae, and even about the interiors of neutron stars. It might thus be an extremely useful piece of understanding", concludes Paulo Freire.

The paper appears as a Letter in Monthly Notices of the Royal Astronomical Society.

Contact:

Dr. Paulo Freire
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-496
E-mail: pfreire@mpifr-bonn.mpg.de
Dr. Thomas Tauris,
Argelander-Institut für Astronomie &
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-73-3660
E-mail: tauris@astro.uni-bonn.de
Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Further information:
http://www.mpifr-bonn.mpg.de/pressreleases/2013/13

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>