Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Manifold Path to Millisecond Pulsars

16.12.2013
Two astronomers from Bonn have proposed a new path for the formation of a newly discovered class of millisecond pulsars with similar orbital periods and eccentricities.

In the scenario of Paulo Freire and Thomas Tauris, a massive white dwarf star accretes matter and angular momentum from a normal companion star and grows beyond the critical Chandrasekhar mass limit.


MPIfR’s 100-m radio telescope near Bad Effelsberg seen from the visitors’ pavilion. The milli-second pulsar PSR J1946+3417 is one of 14 new pulsars recently discovered with this telescope

MPIfR/Norbert Junkes


The final path of close binary stellar evolution according to the new scenario, starting with an X-ray binary with an accreting white dwarf and leading to a millisecond pulsar with a low-mass

Paulo Freire & Thomas Tauris

The new hypothesis makes several testable predictions about this recently discovered sub-class of millisecond pulsars. If confirmed, it opens up new avenues of research into the physics of stars, in particular the momentum kicks and mass loss associated with accretion induced collapse of massive white dwarfs.

Neutron stars can spin very fast – with a record value of 716 rotations per second. Such extreme objects are known as millisecond pulsars. Ever since their first discovery in 1982, it has been thought that they are old dead neutron stars that are lucky enough to be in binary star system.

As the companion evolves, it starts transferring matter onto the neutron star, spinning it up. This sort of system is known as an X-ray binary. Eventually the companion evolves into a white dwarf star, accretion stops and the neutron star becomes a millisecond pulsar, detectable through its radio pulsations. The orbits of these systems have very low eccentricities, meaning their orbits are extremely close to being perfect circles.

This is a consequence of the tidal circularization that happens during the mass transfer stage. Such a scenario has been confirmed both in theoretical work and in the discovery of several systems in different stages of their evolution from X-ray binaries to millisecond pulsars.

However, recent discoveries like PSR J1946+3417 are hinting at the possibility of different formation paths to millisecond pulsars. This source is among 14 new pulsars recently discovered with the Effelsberg 100-m radio telescope. Spinning 315 times per second, this is clearly a millisecond pulsar; however, its orbital eccentricity is 4 orders of magnitude larger than other systems with a similar orbital period. Its companion mass is about 0.24 solar masses, most likely a helium white dwarf. Interestingly enough, at about the same time, two systems with similar parameters were discovered using the Arecibo 305 m radio telescope.

It is quite possible that these binary systems started their evolution as triple systems which became dynamically unstable, as in the case of PSR J1903+0327, the first millisecond pulsar with an eccentric orbit. However, this process generates a wide variety of orbital periods, eccentricities and companion masses, quite unlike the three new discoveries, which are in everything very similar.

The new hypothesis includes the collapse of a massive white dwarf after accretion has terminated. It explains not only the similarity of eccentricities and companion masses, but also their values. "I was surprised when we looked at the calculated orbital periods and eccentricities predicted by our model", says Thomas Tauris, affiliated with both, Argelander-Institut für Astronomie & Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn. "It gives an exact match with the observations! Thus I knew then we were on to something, although small number statistics could still be at work."

The new theory builds on previous extensive computational work lead by Tauris. It makes a prediction for the new type of systems: they should have orbital periods between 10 and 60 days, but with a concentration towards the middle of that range, almost exactly as observed for the new systems.

"Our new approach is very elegant", says the lead author, Paulo Freire from MPIfR. "But whether Nature is really making millisecond pulsars this way is not known yet.''

For the next few years, the pulsar team at the Fundamental Physics In Radio Astronomy Group at MPIfR will be involved in testing the predictions of this scenario, particularly by doing optical follow-up studies and by making precise mass measurements of the pulsars and their companions, a key feature of this study. They will also attempt to find more of these pulsar systems using the Effelsberg radio telescope.

"The neat thing is that if the theory passes these tests, it will allow us to learn much more about the kicks and mass loss associated with accretion induced supernovae, and even about the interiors of neutron stars. It might thus be an extremely useful piece of understanding", concludes Paulo Freire.

The paper appears as a Letter in Monthly Notices of the Royal Astronomical Society.

Contact:

Dr. Paulo Freire
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-496
E-mail: pfreire@mpifr-bonn.mpg.de
Dr. Thomas Tauris,
Argelander-Institut für Astronomie &
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-73-3660
E-mail: tauris@astro.uni-bonn.de
Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Further information:
http://www.mpifr-bonn.mpg.de/pressreleases/2013/13

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>