Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Man-made aurora to help predict space weather

08.06.2010
For more than 25 years, our understanding of terrestrial space weather has been partly based on incorrect assumptions about how nitrogen, the most abundant gas in our atmosphere, reacts when it collides with electrons produced by energetic ultraviolet sunlight and "solar wind."

New research published today, Tuesday 8 June, in IOP Publishing's Journal of Physics B: Atomic, Molecular and Optical Physics describes how scientists from NASA's Jet Propulsion Laboratory (JPL) at the California Institute of Technology have fired electrons of differing energies through a cloud of nitrogen gas to measure the ultraviolet light emitted by this collision.

The researchers have found that well-trusted measurements published in a 1985 journal paper by researchers Ajello and Shemansky contain a significant experimental error, putting decades of space weather findings dependent on this work on unstable ground.

The difference between these contemporary findings and the 1985 researchers' work stems from the 2010 team's improved ability to create and control the collisions and avoid the analytical pitfalls that plagued the 1985 findings.

The new results from the team at JPL suggest that the intensity of a broad band of ultraviolet light emitted from the collision changes significantly less with bombarding electron energies than previously thought.

As the ultraviolet light within the so called 'Lyman-Birge-Hopfield' (LBH) band is used by the likes of NASA and the European Space Agency to better understand the physical and chemical processes occurring in our upper atmosphere and in near-Earth space, the results will give some immediate cause to reflect.

With near-Earth space playing host to our ever-growing satellite communication systems, the new more accurate measurements might unleash a greater understanding of space weather and help us better protect our space-based assets.

The findings will also help further our understanding of phenomena like Aurora Borealis (the Northern Lights) and similarly the Aurora Australis (Southern Lights), which are caused by collisional processes involving solar wind particles exciting terrestrial oxygen and nitrogen particles at the North and South Pole.

The researchers are hopeful that their findings will also assist the Cassini project understand happenings on Saturn's largest moon, Titan, as LBH emissions have been detected by the orbiting robotic spacecraft.

Author Dr Charles Patrick Malone from JPL said, "Our measurement of LBH energy-dependence differs significantly from widely accepted results published 25 years ago. Aeronomers can now turn the experiment around and apply it to atmospheric studies and determine what kind of collisions produce the observed light."

The article will be available to read from Tuesday 8 June at http://iopscience.iop.org/0953-4075/43/13/135201

Lena Weber | EurekAlert!
Further information:
http://www.iop.org

Further reports about: LBH Physic chemical process communication system ultraviolet light

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>