Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Man-made aurora to help predict space weather

08.06.2010
For more than 25 years, our understanding of terrestrial space weather has been partly based on incorrect assumptions about how nitrogen, the most abundant gas in our atmosphere, reacts when it collides with electrons produced by energetic ultraviolet sunlight and "solar wind."

New research published today, Tuesday 8 June, in IOP Publishing's Journal of Physics B: Atomic, Molecular and Optical Physics describes how scientists from NASA's Jet Propulsion Laboratory (JPL) at the California Institute of Technology have fired electrons of differing energies through a cloud of nitrogen gas to measure the ultraviolet light emitted by this collision.

The researchers have found that well-trusted measurements published in a 1985 journal paper by researchers Ajello and Shemansky contain a significant experimental error, putting decades of space weather findings dependent on this work on unstable ground.

The difference between these contemporary findings and the 1985 researchers' work stems from the 2010 team's improved ability to create and control the collisions and avoid the analytical pitfalls that plagued the 1985 findings.

The new results from the team at JPL suggest that the intensity of a broad band of ultraviolet light emitted from the collision changes significantly less with bombarding electron energies than previously thought.

As the ultraviolet light within the so called 'Lyman-Birge-Hopfield' (LBH) band is used by the likes of NASA and the European Space Agency to better understand the physical and chemical processes occurring in our upper atmosphere and in near-Earth space, the results will give some immediate cause to reflect.

With near-Earth space playing host to our ever-growing satellite communication systems, the new more accurate measurements might unleash a greater understanding of space weather and help us better protect our space-based assets.

The findings will also help further our understanding of phenomena like Aurora Borealis (the Northern Lights) and similarly the Aurora Australis (Southern Lights), which are caused by collisional processes involving solar wind particles exciting terrestrial oxygen and nitrogen particles at the North and South Pole.

The researchers are hopeful that their findings will also assist the Cassini project understand happenings on Saturn's largest moon, Titan, as LBH emissions have been detected by the orbiting robotic spacecraft.

Author Dr Charles Patrick Malone from JPL said, "Our measurement of LBH energy-dependence differs significantly from widely accepted results published 25 years ago. Aeronomers can now turn the experiment around and apply it to atmospheric studies and determine what kind of collisions produce the observed light."

The article will be available to read from Tuesday 8 June at http://iopscience.iop.org/0953-4075/43/13/135201

Lena Weber | EurekAlert!
Further information:
http://www.iop.org

Further reports about: LBH Physic chemical process communication system ultraviolet light

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>