Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the shortest light bursts leads to better understanding of nature

02.07.2012
An attosecond is a ridiculously brief sliver of time – a scant billionth of a billionth of a second. This may seem too short to have any practical applications, but at the atomic level, where electrons zip and jump about, these vanishingly short timescales are crucial to a deeper understanding of science.

In a paper accepted for publication in the American Institute of Physics' journal Review of Scientific Instruments, a team of researchers describes an advanced experimental system that can generate attosecond bursts of extreme ultraviolet light. Such pulses are the shortest controllable light pulses available to science.

With these pulses, according to the researchers, it's possible to measure the dynamics of electrons in matter in real-time. Advances in attosecond science may enable scientists to verify theories that describe how matter behaves at a fundamental level, how certain important chemical reactions – such as photosynthesis – work. Additional advances may eventually lead to the control of chemical reactions.

"Understanding how matter works at the level of its electrons is likely to lead to new scientific tools and to novel technologies," said Felix Frank, of Imperial College in London and one of the authors on the paper. "In the future, this knowledge could help us to make better drugs, more efficient solar cells, and other things we can't yet foresee."

The researchers were able to produce these pulses by a process called high harmonic generation (HHG). The fundamental technology driving their setup is a high-power femtosecond laser system (femtoseconds are three orders of magnitude longer than attoseconds). The near infrared femtosecond laser pulses are corralled through a waveguide and a series of specialized mirrors, causing them to be compressed in time. With their waveforms precisely controlled, these compressed pulses are then focused into a gas target, creating an attosecond burst of extreme ultraviolet radiation.

The experimental system developed by the researchers is able to accurately measure the attosecond pulses and deliver them to a variety of experiments in conjugation with other precisely synchronized laser pulses. "Though it incorporates many novel features, our system builds on a decade of research conducted by physics groups around the world," said John Tisch, lead scientist developing the technology at Imperial College.

Charles E. Blue | EurekAlert!
Further information:
http://www.aip.org

Further reports about: Imperial chemical reaction femtosecond laser laser pulses

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>