Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making runways safer

05.08.2011
Airplanes undergo significant stresses during take-off and landing, and parts often become detached, putting subsequent runway users at risk. Until now, airport staff have had to monitor runways without technical assistance – an activity that is prone to errors. A new radar system is set to increase safety at airports.

It might have happened over ten years ago now, but most people can still recall the Concorde crash: the TV images showing the supersonic jet with flames streaming from its tail were unforgettable. It was a piece of metal lying on the runway during take-off that caused the accident. The aircraft’s tire burst as it rolled over the metal, sending chunks of rubber flying into the fuel tank, which then exploded – with the loss of 113 lives.


The radar sensor can detect objects just centimeters across on runways. (© Fraunhofer FHR)

To avoid accidents such as this, airport staff drive up and down runways at six-hour intervals looking for any pieces of debris. But to monitor the huge areas in question without any kind of technical assistance is time-consuming and error-prone work – especially in bad weather, for instance when fog is obscuring the view. And the intervals between checks are also too long.

A new weatherproof safety system will in future monitor runways continuously for debris and warn of any dangers. Research scientists at the Fraunhofer Institutes for High Frequency Physics and Radar Techniques FHR and for Communication, Information Processing and Ergonomics FKIE are developing the system in conjunction with the University of Siegen, PMD Technologies GmbH and Wilhelm Winter GmbH in a project dubbed LaotSe – short for “Airport runway monitoring through multimodal networked sensor systems.“ “Our technology would have prevented the Concorde tragedy from happening,” says Dr. Helmut Essen, who heads the Millimeter-Wave Radar and High Frequency Sensors department at the FHR in Wachtberg. “Devices installed all along the runway continuously scan the surface. They can detect even the smallest of items, such as screws, but the system will only issue a warning if an object remains on the runway for a longer period of time. A windblown plastic bag or a bird resting briefly will not set off the alarm.”

The system comprises an infrared camera, optical 2D and 3D cameras and networked radar sensors. These sensors were developed by researchers at the FHR. The three different types of equipment complement each other: Radar functions around the clock and whatever the weather. It can detect objects but not identify them. The cameras are better suited to classifying objects, but they are affected by the weather and the time of day. Whenever a radar sensor detects something, it instructs the cameras to take a closer look. All the sensor data are then amalgamated using software developed at the FKIE to produce a situational overview. The FKIE experts call this ‘sensor data fusion’. If the overview shows an abnormal situation, air traffic control is informed in the tower. They can take a look at their screens to judge whether there is a real danger and, if so, halt air traffic. “Our solution is merely an assistance system. The final decision on how to proceed lies with airport staff,” stresses Dr. Wolfgang Koch, head of department at the FKIE.

While similar radar systems have been developed, these are only capable of detecting metal objects, and they often give rise to false alarms. What is more, because they are mounted high up on masts they can easily be damaged in the event of an airplane accident. Dr. Essen outlines some of the new system’s advantages: “Our radar sensor transmits at a frequency of 200 GHz, so it can detect objects that are just one or two centimeters across. And using three different kinds of sensor means false alarms are almost out of the question. The device is miniaturized and scans up to 700 meters in all directions.” Initial testing of a radar sensor and camera will begin at Cologne-Bonn airport this fall, and plans are in place for further testing using several demonstrator systems before the project ends in April 2012.

Dr. Helmut Essen | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010-2011/20/safer-runways.jsp

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>