Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making runways safer

05.08.2011
Airplanes undergo significant stresses during take-off and landing, and parts often become detached, putting subsequent runway users at risk. Until now, airport staff have had to monitor runways without technical assistance – an activity that is prone to errors. A new radar system is set to increase safety at airports.

It might have happened over ten years ago now, but most people can still recall the Concorde crash: the TV images showing the supersonic jet with flames streaming from its tail were unforgettable. It was a piece of metal lying on the runway during take-off that caused the accident. The aircraft’s tire burst as it rolled over the metal, sending chunks of rubber flying into the fuel tank, which then exploded – with the loss of 113 lives.


The radar sensor can detect objects just centimeters across on runways. (© Fraunhofer FHR)

To avoid accidents such as this, airport staff drive up and down runways at six-hour intervals looking for any pieces of debris. But to monitor the huge areas in question without any kind of technical assistance is time-consuming and error-prone work – especially in bad weather, for instance when fog is obscuring the view. And the intervals between checks are also too long.

A new weatherproof safety system will in future monitor runways continuously for debris and warn of any dangers. Research scientists at the Fraunhofer Institutes for High Frequency Physics and Radar Techniques FHR and for Communication, Information Processing and Ergonomics FKIE are developing the system in conjunction with the University of Siegen, PMD Technologies GmbH and Wilhelm Winter GmbH in a project dubbed LaotSe – short for “Airport runway monitoring through multimodal networked sensor systems.“ “Our technology would have prevented the Concorde tragedy from happening,” says Dr. Helmut Essen, who heads the Millimeter-Wave Radar and High Frequency Sensors department at the FHR in Wachtberg. “Devices installed all along the runway continuously scan the surface. They can detect even the smallest of items, such as screws, but the system will only issue a warning if an object remains on the runway for a longer period of time. A windblown plastic bag or a bird resting briefly will not set off the alarm.”

The system comprises an infrared camera, optical 2D and 3D cameras and networked radar sensors. These sensors were developed by researchers at the FHR. The three different types of equipment complement each other: Radar functions around the clock and whatever the weather. It can detect objects but not identify them. The cameras are better suited to classifying objects, but they are affected by the weather and the time of day. Whenever a radar sensor detects something, it instructs the cameras to take a closer look. All the sensor data are then amalgamated using software developed at the FKIE to produce a situational overview. The FKIE experts call this ‘sensor data fusion’. If the overview shows an abnormal situation, air traffic control is informed in the tower. They can take a look at their screens to judge whether there is a real danger and, if so, halt air traffic. “Our solution is merely an assistance system. The final decision on how to proceed lies with airport staff,” stresses Dr. Wolfgang Koch, head of department at the FKIE.

While similar radar systems have been developed, these are only capable of detecting metal objects, and they often give rise to false alarms. What is more, because they are mounted high up on masts they can easily be damaged in the event of an airplane accident. Dr. Essen outlines some of the new system’s advantages: “Our radar sensor transmits at a frequency of 200 GHz, so it can detect objects that are just one or two centimeters across. And using three different kinds of sensor means false alarms are almost out of the question. The device is miniaturized and scans up to 700 meters in all directions.” Initial testing of a radar sensor and camera will begin at Cologne-Bonn airport this fall, and plans are in place for further testing using several demonstrator systems before the project ends in April 2012.

Dr. Helmut Essen | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010-2011/20/safer-runways.jsp

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>