Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the passage of time invisible (and the illusion of a Star Trek transporter)

16.11.2010
While a range of ingenious man-made materials bring us ever closer to realising the possibility of cloaking objects from visible light, research from Imperial College London is now taking invisibility into the fourth dimension - time - creating the groundbreaking potential to hide whole events.

The laws of physics might make the creation of a transporter which can dematerialise objects and then rematerialise them elsewhere a little beyond us, but it is now being suggested that an object could move from one region of space to another, completely unseen by anyone watching.

Research published today, Tuesday 16 November 2010, in IOP Publishing's Journal of Optics, explains how the propagation of light can be manipulated to create a 'temporal void', allowing undetectable moments of invisibility.

As lead author, Professor Martin McCall from the Department of Physics at Imperial College London, explains, "Our spacetime 'event' cloak works by dividing illuminating light into a leading part which is sped up and passes before an event, and a trailing part which is slowed down and passes after. Light is then stitched back together seamlessly, so as to leave observers in ignorance."

Graduate student Alberto Favaro explains further, "It is unlike ordinary cloaking devices because it does not attempt to divert light around an object. Instead it pulls apart the light rays in time, as if opening a theatre curtain - creating a temporary corridor through which energy, information, and matter can be manipulated or transported undetected."

Researcher Dr Paul Kinsler is enthusiastic about their proof of concept design which uses customised versions of optical fibres already used in telecommunications to achieve the feat.

The team is confident that their findings will initiate a race to create a practical spacetime cloak.

Professor Martin McCall continues, "We have shown that by manipulating the way the light illuminating an event reaches the viewer, it is possible to hide the passage of time. Not only can specific events be obscured, but it is possible for me to be watching you and for you to suddenly disappear and reappear in a different location."

As well as making a safe-cracking thief's dreams come true, the optical breakthrough promises exciting advances in quantum computing, which depends on the manipulation of light for the safe transmission of vast amounts of data.

Besides the science-fiction capabilities of the event cloak, signal-processing applications will play a key role in driving research forward on this topic.

The researchers' paper can be downloaded from Tuesday 16 November 2010 here: http://iopscience.iop.org/2040-8986/13/2/024003/pdf/0240-8986_13_2_024003.

Joseph Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

IVAM Marketing Prize recognizes convincing technology marketing for the tenth time

22.08.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>