Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making nanoparticles in artificial cells

30.06.2009
Two new construction manuals are now available for the world's smallest lamps. Based on these protocols, scientists from the Max Planck Institute of Colloids and Interfaces have tailor-made nanoparticles that can be used as position lights on cell proteins and, possibly in the future as well, as light sources for display screens or for optical information technology.

The researchers produced cadmium sulphide particles in microscopically small membrane bubbles. Depending on which of the construction manuals they follow, the particles can be 4 or 50 nanometres in size.

Because the membrane bubbles have the same size as living cells, the scientists' work also provides an indication as to how nanostructures could arise in nature. (Small, published online: June 8, 2009/DOI: 10.1002/smll.200900560)

Cells and microorganisms are absolute masters when it comes to working in the smallest possible dimensions. Like particularly efficient micro-factories, they produce particles and structures from inorganic material, for example pieces of chalk, that are only a few nanometres in size, that is, millionths of a millimetre. Cells have two different factors to thank for this capability. First, they have peptides, a biological tool at their disposal that may shape the chalk into a desired form. Second, the fact that they are very small themselves is convenient: the chalk particles cannot grow boundlessly - the end is reached when the calcium carbonate, the building block of chalk, runs out in the cell.

"We used the fact that cells represent a closed reaction container as a model for the synthesis of nanoparticles," says Rumiana Dimova. Her group at the Max Planck Institute of Colloids and Interfaces studies membranes - the cell envelope. The scientist and her colleagues form bubbles that are around 50 micrometres in size from lecithin membranes, which are similar to biological membranes. Like cells, membrane bubbles - or vesicles as scientists refer to them - also provide a closed reaction container. The scientists load the membrane bubbles with one of two reactants for the nanoparticles.

From this point, the researchers have developed two different sets of protocols. In one case, they produce bubbles loaded with one of the two reactants, sodium sulphide or cadmium chloride. The scientists then bring the bubbles with the different loads together and fuse two vesicles to form a bigger vesicle - this is done by subjecting the bubble cocktail to a short but very strong electrical pulse. The electric shock fuses the membranes of two adjacent bubbles.

In many cases, this results in the fusion of two bubbles containing different reactants. These then react to form cadmium sulphide, which is not water soluble and thus precipitates in the form of nanoparticles. "Because the reactants are only present to a limited extent in the fused bubbles, the particles only grow to a size of four nanometres," explains Rumiana Dimova. The scientists were able to track the entire process directly under the microscope because they had added different fluorescent molecules to the membranes of the differently loaded vesicles. The researchers were also able to see the nanoparticles forming as the particles shone like tiny lamps.

In the second process, the researchers only produce vesicles with one of the reactants. When the vesicles have formed, unlike in the first procedure, the researchers do not remove them from the production chamber. Instead, the bubbles remain attached to their substrate via small membrane channels, like balloons tied to strings, and stand in a solution that is the same as the one inside them. The researchers working with Rumiana Dimova then altered this situation: they substituted the solution with the first ingredient for the nanoparticles with a second component. This causes no change inside the vesicles at first. The second ingredient only creeps gradually between the substrate and membrane into the channel and to the vesicle. In the vesicle, where the other ingredient is already waiting, the nanoparticles grow again - this time to a size of 50 nanometres.

"With our method, we succeeded for the first time in producing particles with a certain diameter in vesicles whose size corresponds to that of cells," says Rumiana Dimova. Previously, biologists thought that cells depended on the help of peptides for the synthesis of nanoparticles. However, as Rumiana Dimova and her colleagues have discovered, it can also be done without them.

Original work:

Peng Yang, Reinhard Lipowsky, and Rumiana Dimova
Nanoparticle Formation in Giant Vesicles: Synthesis in Biomimetic Compartments
Small, published online, 8 June, 2009/DOI: 10.1002/smll.200900560

Dr. Rumiana Dimova | EurekAlert!
Further information:
http://www.mpikg.mpg.de

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>