Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making big 'Schroedinger cats'

22.07.2013
Quantum research pushes boundary by testing micro theory for macro objects

Since Erwin Schroedinger's famous 1935 cat thought experiment, physicists around the globe have tried to create large scale systems to test how the rules of quantum mechanics apply to everyday objects.

Researchers at the University of Calgary recently made a significant step forward in this direction by creating a large system that is in two substantially different states at the same time. Until this point, scientists had only managed to recreate quantum effects on much smaller scales.

Professor Alex Lvovsky and associate professor Christoph Simon from the Physics and Astronomy department together with their graduate students revealed their findings in a world leading physics research journal, Nature Physics.

Understanding Schroedinger's cat

In contrast to our everyday experience, quantum physics allows for particles to be in two states at the same time – so-called quantum superpositions. A radioactive nucleus, for example, can simultaneously be in a decayed and non-decayed state.

Applying these quantum rules to large objects leads to paradoxical and even bizarre consequences. To emphasize this, Erwin Schroedinger, one of the founding fathers of quantum physics, proposed in 1935 a thought experiment involving a cat that could be killed by a mechanism triggered by the decay of a single atomic nucleus. If the nucleus is in a superposition of decayed and non-decayed states, and if quantum physics applies to large objects, the belief is that the cat will be simultaneously dead and alive.

While quantum systems with properties akin to 'Schroedinger's cat' have been achieved at a micro level, the application of this principle to everyday macro objects has proved to be difficult to demonstrate.

"This is because large quantum objects are extremely fragile and tend to disintegrate when subjected to any interaction with the environment," explains Lvovsky.

Photons help to illuminate the paradox

The breakthrough achieved by Calgary quantum physicists is that they were able to contrive a quantum state of light that consists of a hundred million light quanta (photons) and can even be seen by the naked eye. In their state, the "dead" and "alive" components of the "cat" correspond to quantum states that differ by tens of thousands of photons.

"The laws of quantum mechanics which govern the microscopic world are very different from classical physics that rules over large objects such as live beings," explains lead author Lvovsky. "The challenge is to understand where to draw the line and explore whether such a line exists at all. Those are the questions our experiment sheds light on," he states.

While the findings are promising, study co-author Simon admits that many questions remain unanswered.

"We are still very far from being able to do this with a real cat," he says. "But this result suggests there is ample opportunity for progress in that direction."

Media Availability

Professor Alex Lvovsky is out of the country and best reached on demand by phone, skype and email on Thursday and Friday between 7 a.m and 4 p.m. EST.

Associate professor Christoph Simon is in Calgary and available on demand in person, by phone, skype and email.

Media Contact

Marie-Helene Thibeault
Director, Marketing and Communications, Faculty of Science
403.220-7056
403.679-8447
m.thibeault@ucalgary.ca
About the University of Calgary
The University of Calgary is a leading Canadian university located in the nation's most enterprising city. The university has a clear strategic direction to become one of Canada's top five research universities by 2016, where research and innovative teaching go hand in hand, and where we fully engage the communities we both serve and lead. This strategy is called Eyes High, inspired by the university's Gaelic motto, which translates as 'I will lift up my eyes.'

For more information, visit ucalgary.ca. Stay up to date with University of Calgary news headlines on Twitter @UCalgary and in our media centre at ucalgary.ca/news/media.

Marie-Helene Thibeault | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>