Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making big 'Schroedinger cats'

22.07.2013
Quantum research pushes boundary by testing micro theory for macro objects

Since Erwin Schroedinger's famous 1935 cat thought experiment, physicists around the globe have tried to create large scale systems to test how the rules of quantum mechanics apply to everyday objects.

Researchers at the University of Calgary recently made a significant step forward in this direction by creating a large system that is in two substantially different states at the same time. Until this point, scientists had only managed to recreate quantum effects on much smaller scales.

Professor Alex Lvovsky and associate professor Christoph Simon from the Physics and Astronomy department together with their graduate students revealed their findings in a world leading physics research journal, Nature Physics.

Understanding Schroedinger's cat

In contrast to our everyday experience, quantum physics allows for particles to be in two states at the same time – so-called quantum superpositions. A radioactive nucleus, for example, can simultaneously be in a decayed and non-decayed state.

Applying these quantum rules to large objects leads to paradoxical and even bizarre consequences. To emphasize this, Erwin Schroedinger, one of the founding fathers of quantum physics, proposed in 1935 a thought experiment involving a cat that could be killed by a mechanism triggered by the decay of a single atomic nucleus. If the nucleus is in a superposition of decayed and non-decayed states, and if quantum physics applies to large objects, the belief is that the cat will be simultaneously dead and alive.

While quantum systems with properties akin to 'Schroedinger's cat' have been achieved at a micro level, the application of this principle to everyday macro objects has proved to be difficult to demonstrate.

"This is because large quantum objects are extremely fragile and tend to disintegrate when subjected to any interaction with the environment," explains Lvovsky.

Photons help to illuminate the paradox

The breakthrough achieved by Calgary quantum physicists is that they were able to contrive a quantum state of light that consists of a hundred million light quanta (photons) and can even be seen by the naked eye. In their state, the "dead" and "alive" components of the "cat" correspond to quantum states that differ by tens of thousands of photons.

"The laws of quantum mechanics which govern the microscopic world are very different from classical physics that rules over large objects such as live beings," explains lead author Lvovsky. "The challenge is to understand where to draw the line and explore whether such a line exists at all. Those are the questions our experiment sheds light on," he states.

While the findings are promising, study co-author Simon admits that many questions remain unanswered.

"We are still very far from being able to do this with a real cat," he says. "But this result suggests there is ample opportunity for progress in that direction."

Media Availability

Professor Alex Lvovsky is out of the country and best reached on demand by phone, skype and email on Thursday and Friday between 7 a.m and 4 p.m. EST.

Associate professor Christoph Simon is in Calgary and available on demand in person, by phone, skype and email.

Media Contact

Marie-Helene Thibeault
Director, Marketing and Communications, Faculty of Science
403.220-7056
403.679-8447
m.thibeault@ucalgary.ca
About the University of Calgary
The University of Calgary is a leading Canadian university located in the nation's most enterprising city. The university has a clear strategic direction to become one of Canada's top five research universities by 2016, where research and innovative teaching go hand in hand, and where we fully engage the communities we both serve and lead. This strategy is called Eyes High, inspired by the university's Gaelic motto, which translates as 'I will lift up my eyes.'

For more information, visit ucalgary.ca. Stay up to date with University of Calgary news headlines on Twitter @UCalgary and in our media centre at ucalgary.ca/news/media.

Marie-Helene Thibeault | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Physics and Astronomy:

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

nachricht Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

29.05.2017 | Life Sciences

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>