Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making a layer cake with atomic precision

15.10.2012
In a report published in Nature Physics, a group led Dr Leonid Ponomarenko and Nobel prize-winner Professor Andre Geim has assembled individual atomic layers on top of each other in a desired sequence.

The team used individual one-atom-thick crystals to construct a multilayer cake that works as a nanoscale electric transformer.

Graphene, isolated for the first time at The University of Manchester in 2004, has the potential to revolutionise diverse applications from smartphones and ultrafast broadband to drug delivery and computer chips.

It has the potential to replace existing materials, such as silicon, but the Manchester researchers believe it could truly find its place with new devices and materials yet to be invented.

In the nanoscale transformer, electrons moving in one metallic layer pull electrons in the second metallic layer by using their local electric fields. To operate on this principle, the metallic layers need to be insulated electrically from each other but separated by no more than a few interatomic distances, a giant leap from the existing nanotechnologies.

These new structures could pave the way for a new range of complex and detailed electronic and photonic devices which no other existing material could make, which include various novel architectures for transistors and detectors.

The scientists used graphene as a one-atom-thick conductive plane while just four atomic layers of boron nitride served as an electrical insulator.

The researchers started with extracting individual atomic planes from bulk graphite and boron nitride by using the same technique that led to the Nobel Prize for graphene, a single atomic layer of carbon. Then, they used advanced nanotechnology to mechanically assemble the crystallites one by one, in a Lego style, into a crystal with the desired sequence of planes.

The nano-transformer was assembled by Dr Roman Gorbachev, of The University of Manchester, who described the required skills. He said: "Every Russian and many in the West know The Tale of the Clockwork Steel Flea.

"It could only be seen through the most powerful microscope but still danced and even had tiny horseshoes. Our atomic-scale Lego perhaps is the next step of craftsmanship".

Professor Geim added: "The work proves that complex devices with various functionalities can be constructed plane by plane with atomic precision.

"There is a whole library of atomically-thin materials. By combining them, it is possible to create principally new materials that don't exist in nature. This avenue promises to become even more exciting than graphene itself."

Daniel Cochlin | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>