Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz laser system allows determination of atomic binding energy of the rarest element on earth

05.07.2013
Ionization potential of radioactive element astatine measured

The radioactive element astatine, the name of which is derived from the Greek word for 'instability,' is so rare on earth that it has not yet been investigated to any greater extent and, as a consequence, very little is known about it.


Close-up of the Mainz laser system
photo: Pascal Naubereit


View of the Mainz laser system
photo: Pascal Naubereit

Using artificially generated astatine, the Mainz-based physicist Sebastian Rothe has now managed for the first time to experimentally explore one of its fundamental parameters, the ionization potential, and thus determine one of the most important properties of the rare element.

The ionization potential is the binding energy, i.e., the amount of energy required to remove an electron from an atom's outer shell. It determines the entire chemical binding characteristics of that element. The measurements were undertaken at the laboratory of the CERN European Organization for Nuclear Research near Geneva using special lasers developed by the LARISSA working group at the Institute of Physics at Johannes Gutenberg University Mainz (JGU). The online journal Nature Communications recently published the findings.

Astatine is the rarest naturally occurring element on earth. The earth's mantel is estimated to contain only 0.07 grams. Together with fluorine, chlorine, and iodine, it is a member of the halogen group, and is formed as a result of the natural decay of uranium. Nuclear physicists now know of more than 20 isotopes which are all extremely short-lived and decay with a half-life of no more than eight hours. Alpha rays are emitted during decay, making the element particularly interesting for targeted cancer therapy thanks to its short lifespan. "Astatine is the only halogen we have known absolutely nothing about to date", explained Professor Klaus Wendt, head of the LARISSA working group at the Institute of Physics at Johannes Gutenberg University Mainz (JGU).

A doctoral candidate and member of this work group, Sebastian Rothe, investigated the ionization potential of astatine using laser spectroscopy and determined it had a value of 9.31751 electron volts (eV). The measurements were conducted at CERN in Geneva and were extrapolated and confirmed at the Canadian research center for particle and nuclear physics TRIUMF in Vancouver in Canada.

LARISSA is an acronym for 'Laser Resonance Ionization for Spectroscopy in Selective Applications'. The technique is based on work originally conducted by Mainz physicist Professor Ernst Otten more than 30 years ago using the isotope mass separator ISOLDE at CERN. It is now the technique of choice employed at almost all large-scale research facilities throughout the world to produce and examine exotic radioisotopes and is commonly used applying the Mainz laser system. It involves the use of laser light for the gradual optical excitation of a valence electron of a selected atomic species until the point of ionization.

"Astatine is the last naturally occurring element whose ionization potential had yet to be determined experimentally," stated Rothe. The binding energy of the electrons in its outermost shell determines what chemical reactions astatine will undergo and thus the stability of its chemical bonds. It is believed that the astatine isotope 211 may have a major pharmaceutical potential. It is an exceptional candidate for use in cancer therapy because of its decay profile, the aggressiveness of its alpha radiation, and the limited range of its radiation. It is also a member of the halogen family, which can be readily introduced into the human body to be attached directly to cancer cells.

Publication
Sebastian Rothe et al.
Measurement of the first ionization potential of astatine by laser ionization spectroscopy
Nature Communications, May 2013
DOI: 10.1038/ncomms2819
http://www.nature.com/ncomms/journal/v4/n5/full/ncomms2819.html
Images
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_astat_01.jpg
Close-up of the Mainz laser system
photo: Pascal Naubereit
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_astat_02.jpg
View of the Mainz laser system
photo: Pascal Naubereit
Contact and further information
Professor Dr. Klaus Wendt
Larissa work group
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-22882
fax +49 6131 39-23428
e-mail: klaus.wendt@uni-mainz.de
http://www.larissa.physik.uni-mainz.de/index_ENG.php

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de
http://www.nature.com/ncomms/journal/v4/n5/full/ncomms2819.html

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>