Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnons control magnons: Transistors for the next generation of computing


A disturbance in the local magnetic order of a solid body can propagate across a material just like a wave. This wave is named spin wave and its quanta are known as magnons.

Physicists from the University of Kaiserslautern propose the usage of magnons to carry and process information instead of electrons as it is done in electronics.

The flow of magnons from the transistor’s Source to Drain (blue bubbles) is controlled by the magnons injected into the Gate (red bubbles)

This technology opens access to a new generation of computers in which data are processed without motion of any real particles like electrons.

This leads to a decrease of the accompanying heat loss and, consequently, to lower energy consumption. Moreover, unique magnon properties allow for the utilization of alternative computing concepts resulting in a drastic increase of speed and performance of modern processors.

In a study recently published in the prestigious scientific journal Nature Communications, the Kaiserslautern scientists have realized the transistor – the main component of any modern computer – solely based on Magnons.

The transistor was proposed for the first time and a proof of concept device was demonstrated. The density of magnons in this three-terminal device could be decreased one thousand times while flowing from the transistor's Source to its Drain via the injection of magnons in the Gate.

The interaction between magnon flows was so efficient due to a strong natural nonlinearity of magnons which was enhanced using an artificial magnetic material – the magnonic crystal.

The demonstrated “magnon controls magnon” approach will be used in future for the realization of a single-chip magnetic processor in which Terabytes of data will be processed purely within the same magnonic system.

The research team consisted of Dr. Andrii Chumak, Dr. Alexander Serga and Prof. Dr. Burkard Hillebrands from the State Research Center Optics and Material Sciences (OPTIMAS) funded by the State of Rhineland-Palatinate. Further funding was obtained through the Deutsche Forschungsgemeinschaft (Grant no. SE 1771/1-2) and EU-FET (Grant InSpin 612759).

For details of the study see:
Andrii V. Chumak, Alexander A. Serga, Burkard Hillebrands: Magnon transistor for all-magnon data processing, Nature Communications 2014 doi 10.1038/ncomms5700 (

Contact: Prof. Dr. Burkard Hillebrands, Tel.: 0631/205-4228, E-Mail:

Legend:The schematic of magnon transistor. The flow of magnons from the transistor’s Source to Drain (blue bubbles) is controlled by the magnons injected into the Gate (red bubbles). The decrease or even the full stop of the Source-to-Drain magnon flow was realized experimentally (Copyright: Chumak, Serga, Hillebrands).

Weitere Informationen:

Thomas Jung | Technische Universität Kaiserslautern

Further reports about: Drain Nature artificial bubbles decrease electrons experimentally natural

More articles from Physics and Astronomy:

nachricht New method will enable most accurate neutron measurement yet
02.10.2015 | Paul Scherrer Institut (PSI)

nachricht An easier way to operate and program multitasking machines
30.09.2015 | Siemens AG

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...

Im Focus: LZH presents additive manufacturing at the LABVOLUTION

The Laser Zentrum Hannover e.V. (LZH) will present how laser-based technologies can contribute to the laboratory of the future at the LABVOLUTION in Hannover in Hall 9, Stand E67/09, from October 6th to 8th, 2015. As a part of the model lab smartLAB, the LZH is showing how additive manufacturing, better known as 3-D printing, can make experimental setups more flexible.

Twelve partners from science and industry are presenting an intelligent and innovative model lab at the special display smartLAB. A part of this intelligent...

Im Focus: New polymer creates safer fuels

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact.

Researchers at Caltech and JPL have discovered a polymeric fuel additive that can reduce the intensity of postimpact explosions that occur during accidents and...

Im Focus: 3-D printing techniques help surgeons carve new ears

When surgical residents need to practice a complicated procedure to fashion a new ear for children without one, they typically get a bar of soap, carrot or an apple.

To treat children with a missing or under-developed ear, experienced surgeons harvest pieces of rib cartilage from the child and carve them into the framework...

Im Focus: Walk the line

NASA studies physical performance after spaceflight

Walking an obstacle course on Earth is relatively easy. Walking an obstacle course on Earth after being in space for six months is not quite as simple. The...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Infrared thermography can detect joint inflammation and help improving work ergonomics

02.10.2015 | Medical Engineering

Semiconductor nanoparticles show high luminescence in a polymer matrix

02.10.2015 | Materials Sciences

New Sinumerik features improve productivity and precision

02.10.2015 | Trade Fair News

More VideoLinks >>>