Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetism's subatomic roots

06.09.2010
Rice study of high-tech materials helps explain everyday phenomenon

The modern world -- with its ubiquitous electronic devices and electrical power -- can trace its lineage directly to the discovery, less than two centuries ago, of the link between electricity and magnetism. But while engineers have harnessed electromagnetic forces on a global scale, physicists still struggle to describe the dance between electrons that creates magnetic fields.

Two theoretical physicists from Rice University are reporting initial success in that area in a new paper in the Proceedings of the National Academy of Sciences. Their new conceptual model, which was created to learn more about the quantum quirks of high-temperature superconductors and other high-tech materials, has also proven useful in describing the origins of ferromagnetism -- the everyday "magnetism" of compass needles and refrigerator magnets.

"As a theorist, you strive to have exact solutions, and even though our new model is purely theoretical, it does produce results that match what's observed in the real world," said Rice physicist Qimiao Si, the lead author of the paper. "In that sense, it is reassuring to have designed a model system in which ferromagnetism is allowed."

Ferromagnets are what most people think of as magnets. They're the permanently magnetic materials that keep notes stuck to refrigerators the world over. Scientists have long understood the large-scale workings of ferromagnets, which can be described theoretically from a coarse-grained perspective. But at a deeper, fine-grained level -- down at the scale of atoms and electrons -- the origins of ferromagnetism remain fuzzy.

"When we started on this project, we were aware of the surprising lack of theoretical progress that had been made on metallic ferromagnetism," Si said. "Even a seemingly simple question, like why an everyday refrigerator magnet forms out of electrons that interact with each other, has no rigorous answer."

Si and graduate student Seiji Yamamoto's interest in the foundations of ferromagnetism stemmed from the study of materials that were far from ordinary.

Si's specialty is an area of condensed matter physics that grew out of the discovery more than 20 years ago of high-temperature superconductivity. In 2001, Si offered a new theory to explain the behavior of the class of materials that includes high-temperature superconductors. This class of materials -- known as "quantum correlated matter" -- also includes more than 10 known types of ferromagnetic composites.

Si's 2001 theory and his subsequent work have aimed to explain the experimentally observed behavior of quantum-correlated materials based upon the strangely correlated interplay between electrons that goes on inside them. In particular, he focuses on the correlated electron effect that occur as the materials approach a "quantum critical point," a tipping point that's the quantum equivalent of the abrupt solid-to-liquid change that occurs when ice melts.

The quantum critical point that plays a key role in high-temperature superconductivity is the tipping point that marks a shift to antiferromagnetism, a magnetic state that has markedly different subatomic characteristics from ferromagnetism. Because of the key role in high-temperature superconductivity, most studies in the field have focused on antiferromagnetism. In contrast, ferromagnetism -- the more familiar, everyday form of magnetism -- has received much less attention theoretically in quantum-correlated materials.

"So our initial theoretical question was, 'What would happen, in terms of correlated electron effects, when a ferromagnetic material moves through one of these quantum tipping points?" said Yamamoto, who is now a postdoctoral researcher at the National High Magnetic Field Laboratory in Tallahassee, Fla..

To carry out this thought experiment, Si and Yamamoto created a model system that idealizes what exists in nature. Their jumping off point was a well-studied phenomenon known as the Kondo effect -- which also has its roots in quantum magnetic effects. Based on what they knew of this effect, they created a model of a "Kondo lattice," a fine-grained mesh of electrons that behaved like those that had been observed in Kondo studies of real-world materials.

Si and Yamamoto were able to use the model to provide a rigorous answer about the fine-grained origins of metallic ferromagnetism. Furthermore, the ferromagnetic state that was predicted by the model turned out to have quantum properties that closely resemble those observed experimentally in heavy fermion ferromagnets.

"The model is useful because it allows us to predict how real-world materials might behave under a specific set of circumstances," Yamamoto said. "And, in fact, we have been able to use it to explain experimental observations on heavy fermion metals, including both the antiferromagnets as well as the less well understood ferromagnetic materials."

The read the paper's abstract, visit http://www.pnas.org/content/early/2010/08/20/1009498107.abstract

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>