Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnetism's subatomic roots

Rice study of high-tech materials helps explain everyday phenomenon

The modern world -- with its ubiquitous electronic devices and electrical power -- can trace its lineage directly to the discovery, less than two centuries ago, of the link between electricity and magnetism. But while engineers have harnessed electromagnetic forces on a global scale, physicists still struggle to describe the dance between electrons that creates magnetic fields.

Two theoretical physicists from Rice University are reporting initial success in that area in a new paper in the Proceedings of the National Academy of Sciences. Their new conceptual model, which was created to learn more about the quantum quirks of high-temperature superconductors and other high-tech materials, has also proven useful in describing the origins of ferromagnetism -- the everyday "magnetism" of compass needles and refrigerator magnets.

"As a theorist, you strive to have exact solutions, and even though our new model is purely theoretical, it does produce results that match what's observed in the real world," said Rice physicist Qimiao Si, the lead author of the paper. "In that sense, it is reassuring to have designed a model system in which ferromagnetism is allowed."

Ferromagnets are what most people think of as magnets. They're the permanently magnetic materials that keep notes stuck to refrigerators the world over. Scientists have long understood the large-scale workings of ferromagnets, which can be described theoretically from a coarse-grained perspective. But at a deeper, fine-grained level -- down at the scale of atoms and electrons -- the origins of ferromagnetism remain fuzzy.

"When we started on this project, we were aware of the surprising lack of theoretical progress that had been made on metallic ferromagnetism," Si said. "Even a seemingly simple question, like why an everyday refrigerator magnet forms out of electrons that interact with each other, has no rigorous answer."

Si and graduate student Seiji Yamamoto's interest in the foundations of ferromagnetism stemmed from the study of materials that were far from ordinary.

Si's specialty is an area of condensed matter physics that grew out of the discovery more than 20 years ago of high-temperature superconductivity. In 2001, Si offered a new theory to explain the behavior of the class of materials that includes high-temperature superconductors. This class of materials -- known as "quantum correlated matter" -- also includes more than 10 known types of ferromagnetic composites.

Si's 2001 theory and his subsequent work have aimed to explain the experimentally observed behavior of quantum-correlated materials based upon the strangely correlated interplay between electrons that goes on inside them. In particular, he focuses on the correlated electron effect that occur as the materials approach a "quantum critical point," a tipping point that's the quantum equivalent of the abrupt solid-to-liquid change that occurs when ice melts.

The quantum critical point that plays a key role in high-temperature superconductivity is the tipping point that marks a shift to antiferromagnetism, a magnetic state that has markedly different subatomic characteristics from ferromagnetism. Because of the key role in high-temperature superconductivity, most studies in the field have focused on antiferromagnetism. In contrast, ferromagnetism -- the more familiar, everyday form of magnetism -- has received much less attention theoretically in quantum-correlated materials.

"So our initial theoretical question was, 'What would happen, in terms of correlated electron effects, when a ferromagnetic material moves through one of these quantum tipping points?" said Yamamoto, who is now a postdoctoral researcher at the National High Magnetic Field Laboratory in Tallahassee, Fla..

To carry out this thought experiment, Si and Yamamoto created a model system that idealizes what exists in nature. Their jumping off point was a well-studied phenomenon known as the Kondo effect -- which also has its roots in quantum magnetic effects. Based on what they knew of this effect, they created a model of a "Kondo lattice," a fine-grained mesh of electrons that behaved like those that had been observed in Kondo studies of real-world materials.

Si and Yamamoto were able to use the model to provide a rigorous answer about the fine-grained origins of metallic ferromagnetism. Furthermore, the ferromagnetic state that was predicted by the model turned out to have quantum properties that closely resemble those observed experimentally in heavy fermion ferromagnets.

"The model is useful because it allows us to predict how real-world materials might behave under a specific set of circumstances," Yamamoto said. "And, in fact, we have been able to use it to explain experimental observations on heavy fermion metals, including both the antiferromagnets as well as the less well understood ferromagnetic materials."

The read the paper's abstract, visit

David Ruth | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>