Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic x-ray vision

25.05.2009
Electrons orbiting the nucleus of an atom act like waves, rather than particles.

To study these electrons, particularly the important outer electrons, researchers from the RIKEN Advanced Science Institute, Wako, in collaboration with colleagues from the SPring-8 Center, Harima, have advanced an x-ray spectroscopy technique that exploits this wave-like behavior. They then found unique magnetic and electronic properties in experiments on a recently synthesized oxide of iridium, Sr2IrO4.

Normally, the outer electrons of atoms stop orbiting freely around the nucleus, as they are used in the chemical bonds of a material. In the so-called 5d heavier elements such as iridium, however, the motion of an electron and its spin are strongly coupled properties. This coupling allows the electrons to regain some of the freedom of motion lost to the chemical bonds. As a consequence, an unexpected insulating behavior had been predicted for 5d oxides such as Sr2IrO4.

In conventional neutron diffraction spectroscopy, the study of the often complex crystal structure of 5d oxides has been problematic. However, enhancements by the researchers to the resonant x-ray scattering (RXS) technique have enabled them to probe the complete magnetic structure of a compound using this technique alone. “In the past, RXS has only been used to enhance the x-ray signal, whereas we have now opened up a completely new opportunity,” explains Hidenori Takagi who led the research team.

Using interference effects between the different x-ray beams scattered by the crystal, the researchers can obtain the precise details of the electron waves. 5d transition metal oxides such as Sr2IrO4 are particularly amenable to RXS, as their atomic resonances occur at short wavelengths and therefore produce more complete data. In their study of Sr2IrO4, the researchers determined its full magnetic structure and, more importantly, confirmed the full recovery of the electron’s freedom and hence the predicted unique insulating state.

This insulating state interests physicists because, in combination with certain properties of the crystal structure of some 5d oxides, an even more unusual insulting state—a so-called topological insulator—could develop. Topological insulators are rare but important since they could be used in novel electronic applications that exploit the electron’s spin properties. “Experimentally, identifying a topological insulator amongst these compounds, particularly at room temperature, would be the realization of a big dream,” says Takagi. In the search for topological insulators and other unusual magnetic properties of 5d elements, Takagi and colleagues have established RXS as an ideal method of choice.

Reference

1. Kim, B. J., Ohsumi, H., Komesu, T., Sakai, S., Morita, T., Takagi, H & Arima, T. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

The corresponding author for this highlight is based at the RIKEN Magnetic Materials Laboratory

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/703/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>