Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic x-ray vision

25.05.2009
Electrons orbiting the nucleus of an atom act like waves, rather than particles.

To study these electrons, particularly the important outer electrons, researchers from the RIKEN Advanced Science Institute, Wako, in collaboration with colleagues from the SPring-8 Center, Harima, have advanced an x-ray spectroscopy technique that exploits this wave-like behavior. They then found unique magnetic and electronic properties in experiments on a recently synthesized oxide of iridium, Sr2IrO4.

Normally, the outer electrons of atoms stop orbiting freely around the nucleus, as they are used in the chemical bonds of a material. In the so-called 5d heavier elements such as iridium, however, the motion of an electron and its spin are strongly coupled properties. This coupling allows the electrons to regain some of the freedom of motion lost to the chemical bonds. As a consequence, an unexpected insulating behavior had been predicted for 5d oxides such as Sr2IrO4.

In conventional neutron diffraction spectroscopy, the study of the often complex crystal structure of 5d oxides has been problematic. However, enhancements by the researchers to the resonant x-ray scattering (RXS) technique have enabled them to probe the complete magnetic structure of a compound using this technique alone. “In the past, RXS has only been used to enhance the x-ray signal, whereas we have now opened up a completely new opportunity,” explains Hidenori Takagi who led the research team.

Using interference effects between the different x-ray beams scattered by the crystal, the researchers can obtain the precise details of the electron waves. 5d transition metal oxides such as Sr2IrO4 are particularly amenable to RXS, as their atomic resonances occur at short wavelengths and therefore produce more complete data. In their study of Sr2IrO4, the researchers determined its full magnetic structure and, more importantly, confirmed the full recovery of the electron’s freedom and hence the predicted unique insulating state.

This insulating state interests physicists because, in combination with certain properties of the crystal structure of some 5d oxides, an even more unusual insulting state—a so-called topological insulator—could develop. Topological insulators are rare but important since they could be used in novel electronic applications that exploit the electron’s spin properties. “Experimentally, identifying a topological insulator amongst these compounds, particularly at room temperature, would be the realization of a big dream,” says Takagi. In the search for topological insulators and other unusual magnetic properties of 5d elements, Takagi and colleagues have established RXS as an ideal method of choice.

Reference

1. Kim, B. J., Ohsumi, H., Komesu, T., Sakai, S., Morita, T., Takagi, H & Arima, T. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

The corresponding author for this highlight is based at the RIKEN Magnetic Materials Laboratory

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/703/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>