Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic x-ray vision

25.05.2009
Electrons orbiting the nucleus of an atom act like waves, rather than particles.

To study these electrons, particularly the important outer electrons, researchers from the RIKEN Advanced Science Institute, Wako, in collaboration with colleagues from the SPring-8 Center, Harima, have advanced an x-ray spectroscopy technique that exploits this wave-like behavior. They then found unique magnetic and electronic properties in experiments on a recently synthesized oxide of iridium, Sr2IrO4.

Normally, the outer electrons of atoms stop orbiting freely around the nucleus, as they are used in the chemical bonds of a material. In the so-called 5d heavier elements such as iridium, however, the motion of an electron and its spin are strongly coupled properties. This coupling allows the electrons to regain some of the freedom of motion lost to the chemical bonds. As a consequence, an unexpected insulating behavior had been predicted for 5d oxides such as Sr2IrO4.

In conventional neutron diffraction spectroscopy, the study of the often complex crystal structure of 5d oxides has been problematic. However, enhancements by the researchers to the resonant x-ray scattering (RXS) technique have enabled them to probe the complete magnetic structure of a compound using this technique alone. “In the past, RXS has only been used to enhance the x-ray signal, whereas we have now opened up a completely new opportunity,” explains Hidenori Takagi who led the research team.

Using interference effects between the different x-ray beams scattered by the crystal, the researchers can obtain the precise details of the electron waves. 5d transition metal oxides such as Sr2IrO4 are particularly amenable to RXS, as their atomic resonances occur at short wavelengths and therefore produce more complete data. In their study of Sr2IrO4, the researchers determined its full magnetic structure and, more importantly, confirmed the full recovery of the electron’s freedom and hence the predicted unique insulating state.

This insulating state interests physicists because, in combination with certain properties of the crystal structure of some 5d oxides, an even more unusual insulting state—a so-called topological insulator—could develop. Topological insulators are rare but important since they could be used in novel electronic applications that exploit the electron’s spin properties. “Experimentally, identifying a topological insulator amongst these compounds, particularly at room temperature, would be the realization of a big dream,” says Takagi. In the search for topological insulators and other unusual magnetic properties of 5d elements, Takagi and colleagues have established RXS as an ideal method of choice.

Reference

1. Kim, B. J., Ohsumi, H., Komesu, T., Sakai, S., Morita, T., Takagi, H & Arima, T. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

The corresponding author for this highlight is based at the RIKEN Magnetic Materials Laboratory

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/703/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>