Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic x-ray vision

25.05.2009
Electrons orbiting the nucleus of an atom act like waves, rather than particles.

To study these electrons, particularly the important outer electrons, researchers from the RIKEN Advanced Science Institute, Wako, in collaboration with colleagues from the SPring-8 Center, Harima, have advanced an x-ray spectroscopy technique that exploits this wave-like behavior. They then found unique magnetic and electronic properties in experiments on a recently synthesized oxide of iridium, Sr2IrO4.

Normally, the outer electrons of atoms stop orbiting freely around the nucleus, as they are used in the chemical bonds of a material. In the so-called 5d heavier elements such as iridium, however, the motion of an electron and its spin are strongly coupled properties. This coupling allows the electrons to regain some of the freedom of motion lost to the chemical bonds. As a consequence, an unexpected insulating behavior had been predicted for 5d oxides such as Sr2IrO4.

In conventional neutron diffraction spectroscopy, the study of the often complex crystal structure of 5d oxides has been problematic. However, enhancements by the researchers to the resonant x-ray scattering (RXS) technique have enabled them to probe the complete magnetic structure of a compound using this technique alone. “In the past, RXS has only been used to enhance the x-ray signal, whereas we have now opened up a completely new opportunity,” explains Hidenori Takagi who led the research team.

Using interference effects between the different x-ray beams scattered by the crystal, the researchers can obtain the precise details of the electron waves. 5d transition metal oxides such as Sr2IrO4 are particularly amenable to RXS, as their atomic resonances occur at short wavelengths and therefore produce more complete data. In their study of Sr2IrO4, the researchers determined its full magnetic structure and, more importantly, confirmed the full recovery of the electron’s freedom and hence the predicted unique insulating state.

This insulating state interests physicists because, in combination with certain properties of the crystal structure of some 5d oxides, an even more unusual insulting state—a so-called topological insulator—could develop. Topological insulators are rare but important since they could be used in novel electronic applications that exploit the electron’s spin properties. “Experimentally, identifying a topological insulator amongst these compounds, particularly at room temperature, would be the realization of a big dream,” says Takagi. In the search for topological insulators and other unusual magnetic properties of 5d elements, Takagi and colleagues have established RXS as an ideal method of choice.

Reference

1. Kim, B. J., Ohsumi, H., Komesu, T., Sakai, S., Morita, T., Takagi, H & Arima, T. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

The corresponding author for this highlight is based at the RIKEN Magnetic Materials Laboratory

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/703/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>