Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Power Revealed in Gamma-Ray Burst Jet

11.12.2009
A specialized camera on a telescope operated by U.K. astronomers from Liverpool has made the first measurement of magnetic fields in the afterglow of a gamma-ray burst (GRB). The result is reported in the Dec.10 issue of Nature magazine by the team of Liverpool John Moores University (LJMU) astronomers who built and operate the telescope and its unique scientific camera, named RINGO.

The burst occurred January 2, 2009. NASA’s Swift satellite observed its position and immediately notified telescopes all over the world via the Internet. When it received the trigger from Swift, the robotic Liverpool Telescope on the island of La Palma in the Canary Islands automatically swung to observe the burst. Its special camera employs a spinning disk of Polaroid -- similar to the material used in sunglasses.

"By observing how the brightness of the GRB varied as we spun the Polaroid, we could measure the magnetic field in the burst," explained Iain Steele, Director of the Liverpool Telescope.

"This important result gives us new insight into the physics of these remarkable objects and is a testament to the close collaboration between observers, theoreticians and technologists in the Liverpool and NASA Swift teams," added LMJU team leader Carole Mundell. "It's incredible to think that the GRB discovery and our measurement process – from first detection and notification by NASA's Swift satellite to the polarization measurement using RINGO on the Liverpool Telescope – took place completely automatically within less than three minutes and with no human intervention!"

"This breakthrough observation gives us the first measurement of magnetic fields in the afterglow of a GRB," said Swift lead scientist Neil Gehrels, Swift lead scientist at NASA's Goddard Space Flight Center in Greenbelt, Md.

Gamma Ray Bursts form when the core of a massive star collapses or when two neutron stars merge together. The resulting explosions are the brightest events in the universe and vastly outshine entire galaxies containing hundreds of billions of stars. NASA’s Swift satellite sees about 100 of these events each year, triggering ground-based follow-up by observations across the globe.

Polarization is one of the least-observed properties in astronomy. This finding opens the door to understanding the role of magnetic fields in some of the most powerful events in the universe.

"These very interesting observations raise the possibility that gamma-ray bursts are not fireballs as usually presumed but are powered and collimated by an organized electromagnetic field," said Roger Blandford, Director of the Kavli Institute of Particle Astrophysics and Cosmology at Stanford University, California, commenting on the result's importance. "It will be very interesting to see if there are similarities in observations of other kinds of cosmic jets."

Funding for the operation of the Liverpool Telescope and GRB research at Liverpool JMU is provided by the U.K. Science and Technology Facilities Council. Swift is managed by NASA Goddard. It was built and is being operated in collaboration with Pennsylvania State University, the Los Alamos National Laboratory in New Mexico, and General Dynamics of Gilbert, Ariz., in the United States. International collaborators include the University of Leicester and Mullard Space Sciences Laboratory in the United Kingdom, Brera Observatory and the Italian Space Agency in Italy, and additional partners in Germany and Japan.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/swift/bursts/magnetic-power.html

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>