Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnetic nanoparticles to simultaneously diagnose, monitor and treat

Whether it's magnetic nanoparticles (mNPs) giving an army of 'therapeutically armed' white blood cells direction to invade a deadly tumour's territory, or the use of mNPs to target specific nerve channels and induce nerve-led behaviour (such as the life-dependant thumping of our hearts), mNPs have come a long way in the past decade.

The future for mNPs however appears even brighter. With the design of 'theranostic' molecules, mNPs could play a crucial role in developing one-stop tools to simultaneously diagnose, monitor and treat a wide range of common diseases and injuries.

Multifunctional particles, modelled on viral particles such as the flu and HIV, are being researched and developed to carry signal-generating sub-molecules and drugs, able to reach target areas through a safe sprinkling of tiny mNPs and external magnetic forces, creating a medical means to confirm specific ailments and automatically release healing drugs while inside a living system.

A landmark selection of review articles published this week in IOP Publishing's Journal of Physics D: Applied Physics, 'Progress in Applications of Magnetic Nanoparticles in Biomedicine', shows just how far magnetic nanoparticles for application in biomedicine have come and what exciting promise they hold for the future.

The magnetic component of the direction-giving nanoparticles is usually an iron-based compound called ferric oxide which is coated in a biocompatible surface, sometimes using, for example, fatty acids, to provide stability during the particles journey through one's body. For biomedicine, the particles are useful because you can add specific signal triggering molecules to identify certain conditions, or dyes to help in medical imaging, or therapeutic agents to remedy a wide-range of afflictions.

Already well documented, mNPs have sparked interest after being attached to stem cells and used in vivo to remedy heart injury in rats. On humans, in 2007, Berlin's Charité Hospital used a technique which involved mNPs, called hyperthermia, to destroy a particularly severe form of brain cancer in 14 patients. The technique, utilising well-tested knowledge that tumour cells are more sensitive to temperature increases than healthy cells, uses mNPs to direct nano-heaters towards the inoperable tumours and, essentially, cook them to death.

Dr Catherine Berry, one of the review paper's authors from the Centre for Cell Engineering in Glasgow, writes, "One of the main forerunners in the development of multifunctional particles for theranostics is magnetic nanoparticles. Following recent advances in nanotechnology, the composition, size, morphology and surface chemistry of particles can all be tailored which, in combination with their magnetic nanoscale phenomena, makes them highly desirable."

From Friday, 6 November, the selection of review articles can be found at

Joe Winters | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>