Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic nanoparticles navigate therapeutic genes through the body

06.03.2009
PTB measures the pinpointed transport of therapeutics for cardiovascular diseases

Health professionals send genes and healthy cells on their way through the bloodstream so that they can, for example, repair tissue damage to arteries. But do they reach their destination in sufficient quantities?

Scientists of the PTB have developed a highly sensitive measuring method with which the efficiency of this therapy can be investigated: Small magnetic particles which are situated on the planted gene or on the planted cell can with the aid of an external magnetic field be specifically directed to the location of the damage.

There the researchers determine, accurate to the picogram per cell, the quantity of the magnetic material – and thus also the quantity of the therapeutically effective genes or cells. In a joint study with the University of Bonn it became clear: By means of the magnetic method it is possible to dramatically increase the efficiency of the gene transfer in comparison to the non-magnetic method.

Magnetic nanoparticles can support or even enable gene transfer under clinically relevant experimental conditions. For the transduction of human cells, gene carriers were coupled to magnetic nanoparticles and dragged into the cells by magnetic field gradients. The efficiency of magnetic transduction turned out to be much higher than the nonmagnetic procedure. An additional welcome side effect is the "magnetization" of the cells after the incorporation of nanoparticles. This may enable the targeted transport of the cells to regions of interest.

A closer look at the underlying mechanism of magnetic gene transfer was taken by the quantification of the magnetic material that was delivered to the cells. The required highly sensitive measurements in the range of a few picogramm per cell were made by PTB using magnetorelaxometry. The good correlation between measurement data and gene transfer encourages to use magnetorelaxometry for monitoring the efficiency of gene and cell transfer, possibly even in vivo.

Dr. Lutz Trahms | EurekAlert!
Further information:
http://www.ptb.de

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>