Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic mixing creates quite a stir

29.10.2009
Sandia researcher solves problem of mixing liquids in tiny volumes

Sandia researchers have developed a process that can mix tiny volumes of liquid, even in complicated spaces.

Researchers currently use all types of processes to try and create mixing, with only “mixed” success. “In small devices,” says Sandia materials scientist Jim Martin “people have tried all kinds of pillars and mixing cells to initiate mixing, but these approaches don’t work well.” Researchers need simpler and more reliable ways to mix in tiny places such as micrometer-sized channels, Martin said.

“Mixing liquids in tiny volumes,” Martin said, “is surprisingly difficult.” When fluid is pushed down a big pipe, eddies are generated that create mixing. But if fluid is pushed down a small pipe no eddies are generated and mixing does not occur unless you subject the fluid to tremendous pressure, which isn’t usually easy or feasible, he said.

Martin’s discovery of how to mix tiny liquid volumes arose from LDRD-funded research directed at improving the sensitivity of the chemical sensors developed in his lab. That project, “Field-Structured Composite Studies,” was a joint effort with Rod Williamson (now retired). While their LDRD project did not lead to the expected results, Martin and Williamson were surprised by the wide variety of physical effects they discovered along the way, including magnetic mixing. These effects, Martin said, ended up being much more interesting and important than the original goal.

Since the project began, Department of Energy’s Division of Material Science and Engineering, Office of Basic Energy Sciences, has started a new project whose goal is to better understand the fundamental science of field-structured composites. So the program succeeded even as it failed, and eventually Martin and graduate student intern Doug Read developed better ways to increase sensor sensitivity.

In the new method of mixing, when one turns on a particular kind of magnetic field, the magnetic particles suspended in the fluid form chains like strings of pearls. The chains start swirling around and that’s what does the mixing. The particles are then removed magnetically, leaving a nice mixed-up liquid.

More technically, the new mixing method, which Jim calls vortex field mixing, subjects a suspension of microscopic, magnetizable particles to a magnetic field whose direction is constantly spinning in a motion similar to a spinning top as it is about to collapse on its side, but much faster. In this “vortex field” the particles assemble into countless microscopic chains that follow the field motion, stirring every nook and cranny of the fluid. The vortex field stirs the liquid vigorously, and surprising fluid effects are possible, such as a kind of washing machine agitation where the spinning direction alternates periodically.

Currently, Martin, Lauren Rohwer, and graduate intern Kyle Solis work with the vortex field mixing, among other projects. Their experimental report, recently appearing in the July issue of Physical Review, has generated interest, including a Physical Review Focus article and a Research Highlight in the September MRS Bulletin.

This type of magnetic mixing with particles that assemble into micro-stir bars isn’t like the magnetic mixing done in high school chemistry class.

“In your high school chemistry class,” Martin says “when you mixed a beaker of water on a stir plate, underneath the plate was a permanent magnet spinning around to make the stir bar spin. If that hidden magnet suddenly became twice as strong, the magnetic field would double but you wouldn’t see any increase in the stirring at all.

“With our process,” Martin said “if we make the magnetic field twice as strong, the stirring becomes four times as strong because the stronger field makes the particle chains longer.”

With conventional stir-bar mixing you can increase the mixing torque by increasing the speed of the stir bar instead. It’s easy to feel this effect by simply holding the beaker slightly above the stir plate. In vortex field mixing increasing the speed of the wobbling doesn’t help, because the chains simply break into smaller pieces and the mixing torque doesn’t change at all.

Vortex field mixing stirs just as effectively with magnetic nanoparticles as with traditional micrometer-size powders. In fact, excellent mixing torques have been obtained using 100 nanometer particles. This means even the tiniest fluid volumes can be mixed, as well as the largest.

As strange as these effects are, they were initially predicted by Martin in a theory paper published in the January 2009 issue of Physical Review. This paper also explains why a simple rotating magnetic field doesn’t induce mixing, and predicts the optimal wobbling angle of the magnetic field.

Vortex field mixing requires only the modest magnetic fields provided by simple wire coils that can be scaled to the size of the fluid cavity. After mixing, a researcher can trap the particles with a permanent magnet, decant the mixed liquid and recycle the particles endlessly.

This work was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE).

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, an autonomous Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Stephanie Holinka, slholin@sandia.gov (505) 284-9227

Stephanie Holinka | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

nachricht Supersensitive through quantum entanglement
28.06.2017 | Universität Stuttgart

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>