Magnetic memories manipulated by voltage, not heat

One advantage of this voltage-induced magnet control is that less power is needed to encode information than in a traditional system. But earlier this year, researchers reported that a key element of magnetization called coercivity is not controlled by voltage at all, but rather by an unfortunate byproduct of applying electricity to a material – that is, by heat.

(Coercivity is the tendency of a magnetic material to resist becoming demagnetized.) To further explore whether voltage or heating is responsible for changes to a magnet's coercivity, scientists from Tsinghua University in Beijing, China, tested three structures commonly used in magnetic memory experiments. Their verdict: It's not the heat.

In a paper accepted for publication in the AIP's Journal of Applied Physics, the authors show that the voltage is directly controlling changes in the magnetic properties of all three of the tested materials. For example, the researchers demonstrate that the effect can be turned on and off almost instantaneously, whereas the changes should lag if heat is the cause.

This is a good thing for the field, since a system that produces too much heat would slow down the performance of any real-world device made from this technology.

Article: “Switchable voltage control of the magnetic coercive field via magnetoelectric effect” is published in the Journal of Applied Physics.

Authors: Jing Wang (1), Jing Ma (1), Zheng Li (1), Yang Shen (1), Yuanhua Lin (1), and C.W. Nan (1).

(1) Tsinghua University

Media Contact

Jennifer Lauren Lee EurekAlert!

More Information:

http://www.aip.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors