Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic field on bright star Vega

25.06.2009
Astronomy & Astrophysics publishes the first detection of a magnetic field on the bright star Vega. Using the NARVAL spectropolarimeter of the Bernard-Lyot telescope on top of the Pic du Midi (France), astronomers clearly observe the magnetically-induced effect in the spectrum of Vega, thereby showing that the star possesses a magnetic field, something unknown so far.

Astronomy & Astrophysics is publishing the first detection of a magnetic field on the star Vega, one of the brightest stars in the sky. Using the high-sensitivity NARVAL spectropolarimeter installed at the Bernard-Lyot telescope (Pic du Midi Observatory, France), a team of astronomers [1] detected the effect of a magnetic field (known as the Zeeman effect) in the light emitted by Vega.

Vega is a famous star among amateur and professional astronomers. Located at only 25 light years from Earth in the Lyra constellation, it is the fifth brightest star in the sky. It has been used as a reference star for brightness comparisons. Vega is twice as massive as the Sun and has only one tenth its age. Because it is both bright and nearby, Vega has been often studied but it is still revealing new aspects when it is observed with more powerful instruments. Vega rotates in less than a day, while the Sun's rotation period is 27 days. The intense centrifugal force induced by this rapid rotation flattens its poles and generates temperature variations of more than 1000 degrees Celsius between the polar (warmer) and the equatorial regions of its surface. Vega is also surrounded by a disk of dust, in which the inhomogeneities suggest the presence of planets.

This time, astronomers analyzed the polarization of light emitted by Vega [2] and detected a weak magnetic field at its surface. This is really not a big surprise because one knows that the charged particle motions inside stars can generate magnetic fields, and this is how solar and terrestrial magnetic fields are produced. However, for more massive stars than the Sun, such as Vega, theoretical models cannot predict the intensity and the structure of the magnetic field, so that astronomers had no clue to the strength of the signal they were looking for. After many unsuccessful attempts in past decades, both the high sensitivity of NARVAL and the full dedication of an observing campaign to Vega have made this first detection possible.

The strength of Vega magnetic field is about 50 micro-tesla, which is close to that of the mean field on Earth and on the Sun. This first observational constraint opens the way to in-depth theoretical studies about the origin of magnetic fields in massive stars. This detection also suggests that magnetic fields exist but have not been detected yet on many stars like Vega, but farther and more difficult to observe. Astronomers believe that this discovery will be a key step in understanding stellar magnetic fields and their influence on stellar evolution. As for Vega, it is now the prototype of a new class of magnetic stars and will definitely continue fascinating astronomers for years.

[1] The team includes F. Lignières, P. Petit, T. Böhm, and M. Aurière (Laboratoire d'Astrophysique de Toulouse-Tarbes, CNRS/Université de Toulouse, France).

[2] Radiation is not only characterized by its wavelength and its intensity, but also by its polarization state. The polarization state of waves, including light waves, describes the orientation of their vibrations. A light wave can either be non-polarized, linearly or circularly polarized depending on the orientation of the electric field as the wave travels. In particular, the polarization state of radiation gives information about the presence of a magnetic field in the medium where the radiation was emitted. Hence, polarization data allow astronomers to study stellar magnetic fields.

First evidence of a magnetic field on Vega. Towards a new class of magnetic A-type stars, by F. Lignières, P. Petit, T. Böhm, and M. Aurière.

To be published in Astronomy & Astrophysics, 2009, vol. 500-3
Full article available in PDF format
A French press release from SRON is available at http://www.insu.cnrs.fr/
Contacts:
Science:
Dr. François Lignières
Observatoire Midi-Pyrénées, France
Email: ligniere (at) ast.obs-mip.fr
Phone: +33 (0)5 61 33 28 98
Dr. Pascal Petit
Observatoire Midi-Pyrénées, France
Email: pascal.petit (at) ast.obs-mip.fr
Phone: +33 (0)5 61 33 28 28
Dr. Törsten Böhm
Observatoire Midi-Pyrénées, France
Email: boehm (at) obs-mip.fr
Phone: +33 (0)5 61 33 28 32
Press office:
Dr. Jennifer Martin
Astronomy & Astrophysics
61, avenue de l'Observatoire
75014 Paris, France
Email: aanda.paris (at) obspm.fr
Phone: +33 1 43 29 05 41

Dr. Jennifer Martin | EurekAlert!
Further information:
http://www.insu.cnrs.fr/
http://www.obspm.fr

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>