Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magic wavelengths

12.05.2015

Tuning up Rydberg atoms for quantum information applications

Rydberg atoms, atoms whose outermost electrons are highly excited but not ionized, might be just the thing for processing quantum information.


Rubidium atoms are held in place using a pair of laser beams at a wavelength of 1064 nm. Two other beams, promote the atoms from their ground state (5s) first to the 5p state and then to the still higher 18 s state. - See more at: http://jqi.umd.edu/news/magic-wavelengths#sthash.GGwhXrVu.dpuf

Credit: Kelley/JQI

These outsized atoms can be sustained for a long time in a quantum superposition condition -- a good thing for creating qubits -- and they can interact strongly with other such atoms, making them useful for devising the kind of logic gates needed to process information. Scientists at JQI (*) and at other labs are pursuing this promising research area.

One problem with Rydberg atoms is that in they are often difficult to handle. One approach is to search for special wavelengths -- "magic wavelengths" -- at which atoms can be trapped and excited into Rydberg states without disturbing them. A new JQI experiment bears out high-precision calculations made predicting the existence of specific magic wavelengths.

RYDBERG ATOMS

Named for Swedish physicist Johannes Rydberg, these ballooned-up atoms are made by exciting the outermost electron in certain elements. Alkali atoms are handy for this purpose since they are hydrogen-like. That is, all the inner electrons can lumped together and regarded, along with the atom's nucleus, as a unified core, with the lone remaining electron lying outside; it's as if the atom were a heavy version of hydrogen.

The main energy levels of atoms are rated according to their principle quantum number, denoted by the letter n. For rubidium atoms, the species used in this experiment, the outermost electron starts in an n=5 state. Then laser light was used here to promote the electron into an n=18 state. Unlike atoms in their ground state, atoms in the n=18 excited state see each other out to distances as large as 700 nm. Rydberg atoms with higher values of n can interact at even larger separations, up to many microns. For comparison, the size of an un-excited rubidium atom is less than 1 nm.

Actually the energy required to promote the atom to the 18s state directly would require a laser producing ultraviolet light, and the researchers decided it was more practical to boost the outer electron to its higher perch in two steps, using two more convenient lasers whose energy added to the total energy difference.

DIPOLE TRAP AND STARK EFFECT

Rb atoms are in the trap in the first place because they have been gathered into a cloud, cooled to temperatures only a few millionths of a degree above absolute zero, and then maintained in position by a special trapping laser beam system.

The trapping process exploits the Stark effect, a phenomenon in which the strong electric field of the confining laser beam alters the energy levels of the atom. By using a sort of hourglass-shaped beam, the light forms a potential-energy well in which atoms will be trapped. The atoms will congregate in a tidy bundle in the middle of this optical dipole trap. The trouble is that the Stark effect, and along with it the trapping influence of the laser beams, depends on the value of n. In other words, a laser beam good for trapping atoms at one n might not work for other values of n.

Fortunately, at just the right wavelengths, the "magic wavelengths," the trapping process will confine atoms in both the low-lying n=5 state and in the excited n=18 state. The theoretical calculations predicting where these wavelengths would be (with a particularly useful one around a value of 1064 nm) and the experimental findings bearing out the predictions were published recently in the journal Physical Review A.

The first author on the paper is Elizabeth Goldschmidt. "We made a compromise, using atoms in a relatively low-n Rydberg state, the 18s state. We work in this regime because we are interested in interaction lengths commensurate with our optical lattice and because the particular magic wavelength is at a convenient wavelength for our lasers, namely 1064 nm." She said that in a next round of experiments, in the lab run by Trey Porto and Steve Rolston, will aim for a higher Rydberg level of n greater than 50.

JQI fellow Marianna Safronova helped to produce the magic wavelength predictions. "To make a prediction," said Safronova, "you need to know the polarizability -- the amount by which the Stark effect will shift the energy level -- for the highly-excited n=18 level. The job for finding magic wavelengths beyond n=18 with our high-precision first-principles approach would be pretty hard. Agreement of theoretical prediction with experimental measurement gives a great benchmark for high-precision theory."

"The most important feature of our paper," said Porto, "is that the theorists have pushed the theoretical limits of calculations of magic wavelengths for highly excited Rydberg atoms, and then verified these calculations experimentally."

###

Reference publication: "Magic wavelengths for the 5s-18s transition in rubidium," E. A. Goldschmidt, D. G. Norris, S. B. Koller, R. Wyllie, R. C. Brown, and J. V. Porto, U. I. Safronova, M. S. Safronova, Physical Review A 91 032518 (2015); http://journals.aps.org/pra/pdf/10.1103/PhysRevA.91.032518

Research Contact: Elizabeth Goldschmidt, goldschm@umd.edu

Media Contact: Phillip F. Schewe, pschewe@umd.edu, (301) 405-0989

(*) The Joint Quantum Institute (JQI) is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.

Media Contact

Phillip Schewe
pschewe@umd.edu
301-405-0989

http://jqi.umd.edu 

Phillip Schewe | EurekAlert!

Further reports about: QUANTUM Rydberg energy levels experimental highly laser beam lasers levels wavelength wavelengths

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>