Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Macroweather is what you expect

26.02.2013
While short-term weather is notoriously volatile, climate is thought to represent a kind of average weather pattern over a long period of time. This dichotomy provides the analytical framework for scientific thinking about atmospheric variability, including climate change.

But the weather-climate dichotomy paints an incomplete picture – one that may be complicating efforts to untangle natural variations in climate from man-made effects, according to McGill University physics professor Shaun Lovejoy.

In a paper published recently in the journal Eos, Transactions, American Geophysical Union, and in a forthcoming book, Lovejoy argues that statistical analysis shows there is a period between short-term weather and long-term climate that should be recognized as distinct.

Using the three-part atmospheric regime also makes the challenge of climate modeling more precise, and could open up a new set of approaches for modeling and predicting the climate, Lovejoy says.

Lovejoy used a new kind of "fluctuation analysis" to show that there are three atmospheric regimes, each with different types of variability. Between the weather (periods less than 10 days) and the climate (periods longer than about 30 to 100 years), there is an intermediate "macroweather" regime. A graphic representation makes the case intuitively clear.

The accompanying chart shows examples from weather (one-hour resolution, bottom), macroweather (20 days, middle) and climate (one century, top). The daily and annual cycles were removed and 720 consecutive points from each resolution are shown so that the differences in the characters of each regime are visually obvious.

At the bottom, the weather curve "wanders" up or down in a path resembling a drunkard's walk. In the middle, the macroweather curve has a markedly different character: upward fluctuations are typically followed by nearly cancelling downward ones. "The longer the period over which we average it, the smaller the variations become," Lovejoy says.

By contrast, the century scale climate curve (top) displays again a weather-like, wandering variability. (While this plot shows temperatures, other atmospheric fields – including wind, humidity and precipitation -- are similar.)

Although the ultimate implications of macroweather may not be known for some time, a basic change in our understanding of what climate is will surely have repercussions, Lovejoy notes.

"Macroweather clarifies the distinction between natural and anthropogenic types of variability and allows us to separate the two with more confidence."

The old saying that "climate is what you expect, weather is what you get," also needs to be reconsidered, he adds. "Macroweather is what we expect."

To view the paper: http://onlinelibrary.wiley.com/doi/10.1002/2013EO010001/pdf
The argument will be further fleshed out in a book to be published in March by Cambridge U. Press, The Weather and Climate: emergent laws and multifractal cascades, by Lovejoy and Daniel Schertzer.

Chris Chipello | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>