Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Macroweather is what you expect

26.02.2013
While short-term weather is notoriously volatile, climate is thought to represent a kind of average weather pattern over a long period of time. This dichotomy provides the analytical framework for scientific thinking about atmospheric variability, including climate change.

But the weather-climate dichotomy paints an incomplete picture – one that may be complicating efforts to untangle natural variations in climate from man-made effects, according to McGill University physics professor Shaun Lovejoy.

In a paper published recently in the journal Eos, Transactions, American Geophysical Union, and in a forthcoming book, Lovejoy argues that statistical analysis shows there is a period between short-term weather and long-term climate that should be recognized as distinct.

Using the three-part atmospheric regime also makes the challenge of climate modeling more precise, and could open up a new set of approaches for modeling and predicting the climate, Lovejoy says.

Lovejoy used a new kind of "fluctuation analysis" to show that there are three atmospheric regimes, each with different types of variability. Between the weather (periods less than 10 days) and the climate (periods longer than about 30 to 100 years), there is an intermediate "macroweather" regime. A graphic representation makes the case intuitively clear.

The accompanying chart shows examples from weather (one-hour resolution, bottom), macroweather (20 days, middle) and climate (one century, top). The daily and annual cycles were removed and 720 consecutive points from each resolution are shown so that the differences in the characters of each regime are visually obvious.

At the bottom, the weather curve "wanders" up or down in a path resembling a drunkard's walk. In the middle, the macroweather curve has a markedly different character: upward fluctuations are typically followed by nearly cancelling downward ones. "The longer the period over which we average it, the smaller the variations become," Lovejoy says.

By contrast, the century scale climate curve (top) displays again a weather-like, wandering variability. (While this plot shows temperatures, other atmospheric fields – including wind, humidity and precipitation -- are similar.)

Although the ultimate implications of macroweather may not be known for some time, a basic change in our understanding of what climate is will surely have repercussions, Lovejoy notes.

"Macroweather clarifies the distinction between natural and anthropogenic types of variability and allows us to separate the two with more confidence."

The old saying that "climate is what you expect, weather is what you get," also needs to be reconsidered, he adds. "Macroweather is what we expect."

To view the paper: http://onlinelibrary.wiley.com/doi/10.1002/2013EO010001/pdf
The argument will be further fleshed out in a book to be published in March by Cambridge U. Press, The Weather and Climate: emergent laws and multifractal cascades, by Lovejoy and Daniel Schertzer.

Chris Chipello | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>