Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lurking bright blue star caught!

11.09.2014

The last piece of a supernova puzzle

A team led by Gastón Folatelli at the Kavli IPMU, the University of Tokyo, has found evidence of a hot binary companion star to a yellow supergiant star, which had become a bright supernova. The existence of the companion star had been predicted by the same team on the basis of numerical calculations.


The image on the left was taken in 2009, and on the right on July 8, 2011.

Credit: Conrad Jung


Images in the top row depict an artist's conception of the supernova explosion process. The corresponding images below were taken with the Hubble Space Telescope. Left: Just before the supernova explosion. A yellow supergiant is shining. Middle: The supernova exploding (the bottom image shows the fading supernova after the explosion). Right: A bright blue star observed.

Credit: Top image: Kavli IPMU Bottom image: NASA/Kavli IPMU/Gastón Folatelli

This finding provides the last link in a chain of observations that have so far supported the team's theoretical picture for this supernova. The results are published in the Astrophysical Journal Letters and have wide implications for our knowledge of binary systems and supernova mechanisms.

"One of the most exciting moments in my career as an astronomer was when I displayed the newly arrived HST images and saw the object right there, where we had anticipated it to be all along" said Gastón Folatelli , who led the efforts to obtain the new Hubble Space Telescope (HST) observations.

The question of how massive stars spend their short lives until they become supernovae is of great interest for astrophysicists. According to the standard theory, which is only applicable to isolated stars, only cool and extended (red supergiants) or hot and blue (Wolf-Rayet stars) are able to become supernovae.

However, growing evidence suggests that most massive stars are not lonely singles but they belong to close binary systems with profuse interactions. Episodes of mass transfer between the members of binary star systems affect the way the stars evolve, meaning that there are a great many more potential scenarios for the final stages of supernova progenitors.

The nearby supernova SN 2011dh, which occurred in 2011 in the well-known whirlpool galaxy M51, which is about 24 million light-years away from the earth, presented an excellent example that could not be explained by the standard theory. What appeared to be a yellow supergiant star was detected at the location of the supernova in images obtained before the explosion, but yellow supergiant stars in isolation were not thought capable of becoming supernovae.

Controversy arose in the astronomy community with several experts proposing that the actual progenitor must have been an unseen bright blue object, such as a Wolf Rayet star. However, the team led by Melina C. Bersten at Kavli IPMU and Omar Benvenuto at the University of La Plata, Argentina, showed that the exploding star must have been extended, like a yellow supergiant, and that it must have belonged to a binary system (see web release on September 28 2012: http://www.ipmu.jp/node/1404). "We produced detailed models that self-consistently explained every property of SN 2011dh through the explosion of a yellow supergiant star in a binary system," remarked Melina C. Bersten.

In March 2013, the proposal of Benvenuto, Bersten and collaborators was given substantial support when the disappearance of the yellow supergiant was observed, indicating that it and not a bright blue star was the exploding object (see web release on Apr. 5 2013: http://www.ipmu.jp/node/1537). "At that time there was just one piece of the puzzle missing to confirm our model: we had to find the companion star that, according to our calculations, was a hot, compact object," said Omar Benvenuto.

With that goal, the group set out to obtain HST observing time, which was granted in 2013 and recently executed on August 7, 2014. Images were obtained in the ultraviolet regime, where the companion star was expected to be most clearly visible. A point source was clearly detected in the new images at the exact location of the supernova (see announcement in http://www.astronomerstelegram.org/?read=6375). "To our excitement, the object had the properties predicted by the models," explained Schuyler Van Dyk, of Caltech, who was in charge of the image analysis. Folatelli and collaborators judged it unlikely that the detection was due to some other contaminating source.

Further HST observations were recently obtained in the optical range by another European team. "When available, such data will not only serve to definitely validate the existence of the companion star, but also they will provide critical information to refine the binary model originally proposed by our team", said Ken'ichi Nomoto from Kavli IPMU. This is a unique opportunity to make such a detailed study of the progenitor of a supernova. The results will have important implications for our knowledge of stellar evolution and its connection with supernova properties.

The case of SN 2011dh beautifully illustrates the advantages of an active feedback between theory and observation. "As a scientist, for me it is like a dream come true to make a prediction and have it confirmed step by step as the supernova evolves and facts are revealed. It is a rare case for astronomy, where events usually take much longer to develop. We are very happy with how the story of SN 2011dh proceeded," concluded Melina C. Bersten.

###

Publication:

Gastón Folatelli, Melina C. Bersten, Omar G. Benvenuto, Schuyler D. Van Dyk, Hanindyo Kuncarayakti, Keiichi Maeda, Takaya Nozawa, Ken'ichi Nomoto, Mario Hamuy, and Robert M. Quimby, "A Blue Point Source at the Location of Supernova 2011dh," Astrophysical Journal Letters.

Contacts:

Gastón Folatelli, Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo
+81-4-7136-6565, gaston.folatelli@ipmu.jp

Melina C. Bersten, Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo
+81-4-7136-6562, melina.bersten@ipmu.jp

Ken'ichi Nomoto, Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo
+81-4-7136-6567, nomoto@astron.s.u-tokyo.ac.jp

PIO Contact:

Marina Komori, Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo
+81-4-7136-5977 (office), +81-80-9343-3171 (mobile), press@ipmu.jp

Aya Tsuboi, Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo
+81-4-7136-5981 (office)

ABOUT KAVLI IPMU

Kavli IPMU (Kavli Institute for the Physics and Mathematics of the Universe) is an international research institute with English as its official language. The goal of the institute is to discover the fundamental laws of nature and to understand the Universe from the synergistic perspectives of mathematics, astronomy, and theoretical and experimental physics. The Institute for the Physics and Mathematics of the Universe (IPMU) was established in October 2007 under the World Premier International Research Center Initiative (WPI) of the Ministry of Education, Sports, Science and Technology in Japan with the University of Tokyo as the host institution. IPMU was designated as the first research institute within Todai Institutes for Advanced Study (TODIAS) in January 2011. It received an endowment from The Kavli Foundation and was renamed the "Kavli Institute for the Physics and Mathematics of the Universe" in April 2012. Kavli IPMU is located on the Kashiwa campus of the University of Tokyo, and more than half of its full-time scientific members come from outside Japan.

Kavli IPMU Website - http://www.ipmu.jp/

Marina Komori | Eurek Alert!

Further reports about: Letters Physics astronomy evidence images observations supernovae

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>