Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lunar Rock-Like Material May Someday House Moon Colonies

06.01.2009
Dwellings in colonies on the moon one day may be built with new, highly durable bricks developed by students from the College of Engineering at Virginia Tech.

Initially designed to construct a dome, the building material is composed of a lunar rock-like material mixed with powdered aluminum that can be molded into any shape.

The invention recently won the In-Situ Lunar Resource Utilization materials and construction category award from the Pacific International Space Center for Exploration Systems (PISCES). The award was one of two prizes given out this year by the research center, which is dedicated to supporting life on the moon and beyond.

Design work on the early-development lunar bricks was based on previous work by the College of Engineering student team’s adviser Kathryn Logan, a professor of materials science and engineering and the Virginia Tech Langley Professor at the National Institute of Aerospace in Hampton, Va. The seven-member student team works with Logan at the NIA.

Logan’s prior research entailed mixing powdered aluminum and ceramic materials to form armor plating for tanks funded through a Department of Defense contract. “I theorized that if I could do this kind of reaction to make armor, then I could use a similar type of reaction to make construction materials for the moon,” Logan said.

Since actual lunar rock, known as regolith, is scarce, the students used volcanic ash from a deposit on Earth along with various minerals and basaltic glass, similar to rock on the lunar surface, according to Eric Faierson, a doctoral student who led the Virginia Tech team.

During initial experiments, the simulated regolith and aluminum powder were mixed and placed inside a shallow aluminum foil crucible. A wire was inserted into the mixture, which was then heated to 2,700 degrees Fahrenheit triggering a reaction called self-propagating high-temperature synthesis (SHS), Logan said. The reaction caused the material to form a solid brick. A ceramic crucible was used in later experiments to form complex curved surfaces.

Once the student team had created a brick, they found that it was almost as strong as concrete under various pressure tests. Faierson said one-square inch of the brick could withstand the gradual application of 2,450 pounds, nearly the weight of a Ford Focus. This strength would enable it to withstand an environment where gravity is a fraction of the pull on Earth. The more than yearlong ongoing research has included studying the bricks reaction to solar radiation and their effectiveness as a construction material for lunar applications.

The research team chose small bricks -- about one-third the size of a regular mason’s brick, or roughly 5 inches x 2.5 inches x 1 inch, and weighing about an eighth of a pound -- for quality control and to conserve materials. “Theoretically the material can be made in any size and shape, however performing the reaction on a larger scale increases the potential for” flaws in the end product, Faierson said. “Large scale implementation might be more appropriate in applications such as landing pads, roadways, and blast berms, where flaws are less of a concern.”

The group formed several brick shapes to demonstrate the concept of forming an igloo-like dome component, but did not build the full structure. Creation of larger bricks, about cinder block size, including those closer to perfectly formed shape, are forthcoming, Logan said. Also to be studied is the harnessing of large quantities of heat derived from the SHS reaction to produce electricity, and extract volatiles for the lunar colony.

One of the team members, Michael Hunt, a graduate student, studied the chemical composition of the aluminum powder and the regolith before the fusion process, and then the resulting brick compound. “It’s definitely exciting to have worked on the lunar brick project,” he said. “I never would have thought that I’d be a part of something like this,” Hunt said.

Judging by members of the Japan-United States Science, Technology & Space Applications Program, which included scientists from NASA and industry, was based on the novelty and thoughtfulness evidenced by the teams, their commitment to PISCES goals and objectives, and their compliance with the rules of the competition. PISCES is located in Hawaii, where volcanic geology gives scientists a landscape similar to the moon that can be used to test technology prior to possible lunar use.

Winning College of Engineering student team members included Faierson, a doctoral student in the materials science and engineering (MSE) department; Hunt, a MSE master’s degree candidate from Virginia Beach, Va.; Susan Holt, a doctoral student in MSE from Christiansburg, Va.; Scott Hopkins, an undergraduate mechanical engineering student from Yorktown, Va.; Sharon Jefferies, a masters student in the aerospace and ocean engineering department from Newport News, Va.; Michael Okyen, an undergraduate mechanical engineering student from Yorktown, Va.; and Brian Stewart, an MSE doctoral student from Hayes, Va.

A student team from Massachusetts Institute of Technology won the second award, in the category of systems engineering.

The Virginia Tech team at Hampton is part of the National Institute of Aerospace, a nonprofit research and graduate education institute. Formed in 2002 to support NASA’s mission of space exploration, the Institute’s graduate program offers masters and doctorate degrees in the fields of engineering and science through Georgia Tech, Hampton University, North Carolina A&T State University, North Carolina State University, the University of Maryland, the University of Virginia and Virginia Tech.

The College of Engineering (www.eng.vt.edu) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college’s 5,700 undergraduates benefit from an innovative curriculum that provides a “hands-on, minds-on” approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 1,800 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation and the world.

Steven Mackay | Newswise Science News
Further information:
http://www.vt.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>