Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lunar Rock-Like Material May Someday House Moon Colonies

06.01.2009
Dwellings in colonies on the moon one day may be built with new, highly durable bricks developed by students from the College of Engineering at Virginia Tech.

Initially designed to construct a dome, the building material is composed of a lunar rock-like material mixed with powdered aluminum that can be molded into any shape.

The invention recently won the In-Situ Lunar Resource Utilization materials and construction category award from the Pacific International Space Center for Exploration Systems (PISCES). The award was one of two prizes given out this year by the research center, which is dedicated to supporting life on the moon and beyond.

Design work on the early-development lunar bricks was based on previous work by the College of Engineering student team’s adviser Kathryn Logan, a professor of materials science and engineering and the Virginia Tech Langley Professor at the National Institute of Aerospace in Hampton, Va. The seven-member student team works with Logan at the NIA.

Logan’s prior research entailed mixing powdered aluminum and ceramic materials to form armor plating for tanks funded through a Department of Defense contract. “I theorized that if I could do this kind of reaction to make armor, then I could use a similar type of reaction to make construction materials for the moon,” Logan said.

Since actual lunar rock, known as regolith, is scarce, the students used volcanic ash from a deposit on Earth along with various minerals and basaltic glass, similar to rock on the lunar surface, according to Eric Faierson, a doctoral student who led the Virginia Tech team.

During initial experiments, the simulated regolith and aluminum powder were mixed and placed inside a shallow aluminum foil crucible. A wire was inserted into the mixture, which was then heated to 2,700 degrees Fahrenheit triggering a reaction called self-propagating high-temperature synthesis (SHS), Logan said. The reaction caused the material to form a solid brick. A ceramic crucible was used in later experiments to form complex curved surfaces.

Once the student team had created a brick, they found that it was almost as strong as concrete under various pressure tests. Faierson said one-square inch of the brick could withstand the gradual application of 2,450 pounds, nearly the weight of a Ford Focus. This strength would enable it to withstand an environment where gravity is a fraction of the pull on Earth. The more than yearlong ongoing research has included studying the bricks reaction to solar radiation and their effectiveness as a construction material for lunar applications.

The research team chose small bricks -- about one-third the size of a regular mason’s brick, or roughly 5 inches x 2.5 inches x 1 inch, and weighing about an eighth of a pound -- for quality control and to conserve materials. “Theoretically the material can be made in any size and shape, however performing the reaction on a larger scale increases the potential for” flaws in the end product, Faierson said. “Large scale implementation might be more appropriate in applications such as landing pads, roadways, and blast berms, where flaws are less of a concern.”

The group formed several brick shapes to demonstrate the concept of forming an igloo-like dome component, but did not build the full structure. Creation of larger bricks, about cinder block size, including those closer to perfectly formed shape, are forthcoming, Logan said. Also to be studied is the harnessing of large quantities of heat derived from the SHS reaction to produce electricity, and extract volatiles for the lunar colony.

One of the team members, Michael Hunt, a graduate student, studied the chemical composition of the aluminum powder and the regolith before the fusion process, and then the resulting brick compound. “It’s definitely exciting to have worked on the lunar brick project,” he said. “I never would have thought that I’d be a part of something like this,” Hunt said.

Judging by members of the Japan-United States Science, Technology & Space Applications Program, which included scientists from NASA and industry, was based on the novelty and thoughtfulness evidenced by the teams, their commitment to PISCES goals and objectives, and their compliance with the rules of the competition. PISCES is located in Hawaii, where volcanic geology gives scientists a landscape similar to the moon that can be used to test technology prior to possible lunar use.

Winning College of Engineering student team members included Faierson, a doctoral student in the materials science and engineering (MSE) department; Hunt, a MSE master’s degree candidate from Virginia Beach, Va.; Susan Holt, a doctoral student in MSE from Christiansburg, Va.; Scott Hopkins, an undergraduate mechanical engineering student from Yorktown, Va.; Sharon Jefferies, a masters student in the aerospace and ocean engineering department from Newport News, Va.; Michael Okyen, an undergraduate mechanical engineering student from Yorktown, Va.; and Brian Stewart, an MSE doctoral student from Hayes, Va.

A student team from Massachusetts Institute of Technology won the second award, in the category of systems engineering.

The Virginia Tech team at Hampton is part of the National Institute of Aerospace, a nonprofit research and graduate education institute. Formed in 2002 to support NASA’s mission of space exploration, the Institute’s graduate program offers masters and doctorate degrees in the fields of engineering and science through Georgia Tech, Hampton University, North Carolina A&T State University, North Carolina State University, the University of Maryland, the University of Virginia and Virginia Tech.

The College of Engineering (www.eng.vt.edu) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college’s 5,700 undergraduates benefit from an innovative curriculum that provides a “hands-on, minds-on” approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 1,800 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation and the world.

Steven Mackay | Newswise Science News
Further information:
http://www.vt.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>