Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LUCIFER Allows Astronomers to Watch Stars Being Born

23.04.2010
A new instrument for the world's largest optical telescope, the Large Binocular Telescope on Mount Graham, allows astronomers to observe the faintest and most distant objects in the universe.

Large Binocular Telescope (LBT) partners in the U.S, Germany and Italy announced April 21 that the first of two new innovative near-infrared cameras/spectrographs for the LBT is now available to astronomers for scientific observations at the telescope on Mount Graham in southeastern Arizona.

After more than a decade of design, manufacturing and testing, the new instrument – dubbed LUCIFER 1 – provides a powerful tool to gain spectacular insights into the universe – from the Milky Way to extremely distant galaxies. LUCIFER, built by a consortium of German institutes, will be followed by an identical twin instrument that will be delivered to the telescope in early 2011.

"With the large light-gathering power of the LBT, astronomers are now able to collect the spectral fingerprints of the faintest and most distant objects in the universe," said LBT director Richard Green, a professor of astronomy at the University of Arizona's Steward Observatory.

LUCIFER 1 and its twin are mounted at the focus points of the LBT's two giant 8.4-meter (27.6 foot) diameter telescope mirrors. Each instrument is cooled to -213 degrees Celsius in order to observe in the near-infrared wavelength range. Near-infrared observations are essential for understanding the formation of stars and planets in our galaxy as well as revealing the secrets of the most distant and very young galaxies.

LUCIFER's innovative design allows astronomers to observe in unprecedented detail, for example star forming regions, which are commonly hidden by dust clouds.

The instrument is remarkably flexible, combining a large field of view with a high resolution. It provides three exchangeable cameras for imaging and spectroscopy in different resolutions according to observational requirements.

Astronomers use spectroscopy to analyze incoming light and answer questions such as how stars and galaxies formed and what they are made of.

The instruments were built by a consortium of five German institutes led by the Center for Astronomy of Heidelberg University, together with the Max Planck Institute for Astronomy in Heidelberg, the Max Planck Institute for Extraterrestrial Physics in Garching, the Astronomical Institute of the Ruhr-University in Bochum, and the University of Applied Sciences in Mannheim.

The LBT is a collaboration among the Italian astronomical community (National Institute of Astrophysics), the University of Arizona, Arizona State University, Northern Arizona University, the LBT Beteiligungsgesellschaft in Germany (Max-Planck-Institut f?r Astronomie in Heidelberg, Zentrum fur Astronomie der Universität Heidelberg, Astrophysikalisches Institut in Potsdam, Max-Planck-Institut f?r Extraterrestrische Physik in Munich, and Max-Planck-Institut f?r Radioastronomie in Bonn), and the Ohio State University and Research Corporation (Ohio State University, University of Notre Dame, University of Minnesota and University of Virginia).

Daniel Stolte | University of Arizona
Further information:
http://www.uanews.org

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>