Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LUCIFER Allows Astronomers to Watch Stars Being Born

23.04.2010
A new instrument for the world's largest optical telescope, the Large Binocular Telescope on Mount Graham, allows astronomers to observe the faintest and most distant objects in the universe.

Large Binocular Telescope (LBT) partners in the U.S, Germany and Italy announced April 21 that the first of two new innovative near-infrared cameras/spectrographs for the LBT is now available to astronomers for scientific observations at the telescope on Mount Graham in southeastern Arizona.

After more than a decade of design, manufacturing and testing, the new instrument – dubbed LUCIFER 1 – provides a powerful tool to gain spectacular insights into the universe – from the Milky Way to extremely distant galaxies. LUCIFER, built by a consortium of German institutes, will be followed by an identical twin instrument that will be delivered to the telescope in early 2011.

"With the large light-gathering power of the LBT, astronomers are now able to collect the spectral fingerprints of the faintest and most distant objects in the universe," said LBT director Richard Green, a professor of astronomy at the University of Arizona's Steward Observatory.

LUCIFER 1 and its twin are mounted at the focus points of the LBT's two giant 8.4-meter (27.6 foot) diameter telescope mirrors. Each instrument is cooled to -213 degrees Celsius in order to observe in the near-infrared wavelength range. Near-infrared observations are essential for understanding the formation of stars and planets in our galaxy as well as revealing the secrets of the most distant and very young galaxies.

LUCIFER's innovative design allows astronomers to observe in unprecedented detail, for example star forming regions, which are commonly hidden by dust clouds.

The instrument is remarkably flexible, combining a large field of view with a high resolution. It provides three exchangeable cameras for imaging and spectroscopy in different resolutions according to observational requirements.

Astronomers use spectroscopy to analyze incoming light and answer questions such as how stars and galaxies formed and what they are made of.

The instruments were built by a consortium of five German institutes led by the Center for Astronomy of Heidelberg University, together with the Max Planck Institute for Astronomy in Heidelberg, the Max Planck Institute for Extraterrestrial Physics in Garching, the Astronomical Institute of the Ruhr-University in Bochum, and the University of Applied Sciences in Mannheim.

The LBT is a collaboration among the Italian astronomical community (National Institute of Astrophysics), the University of Arizona, Arizona State University, Northern Arizona University, the LBT Beteiligungsgesellschaft in Germany (Max-Planck-Institut f?r Astronomie in Heidelberg, Zentrum fur Astronomie der Universität Heidelberg, Astrophysikalisches Institut in Potsdam, Max-Planck-Institut f?r Extraterrestrische Physik in Munich, and Max-Planck-Institut f?r Radioastronomie in Bonn), and the Ohio State University and Research Corporation (Ohio State University, University of Notre Dame, University of Minnesota and University of Virginia).

Daniel Stolte | University of Arizona
Further information:
http://www.uanews.org

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>