Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lovely 'snowfakes' mimic nature, advance science

26.02.2009
Exquisitely detailed and beautifully symmetrical, the snowflakes that David Griffeath makes are icy jewels of art.

But don't be fooled; there is some serious science behind the University of Wisconsin-Madison mathematician's charming creations. Although they look as if they tumbled straight from the clouds, these "snowfakes" are actually the product of an elaborate computer model designed to replicate the wildly complex growth of snow crystals.

Four years in the making, the model that Griffeath built with University of California, Davis, mathematician Janko Gravner can generate all of nature's snowflake types in rich three-dimensional detail. In the January issue of Physical Review E, the pair published the model's underlying theory and computations, which are so intensive they are "right on the edge of feasibility," says Griffeath.

"Even though we've artfully stripped down the model over several years so that it's as simple and efficient as possible, it still takes us a day to grow one of these things," he says.

In nature, each snowflake begins as a bit of dust, a bacterium or a pollutant in the sky, around which water molecules start glomming together and freezing to form a tiny crystal of ice. Roughly a quintillion (one million million million) molecules make up every flake, with the shape dictated by temperature, humidity and other local conditions.

How such a seemingly random process produces crystals that are at once geometrically simple and incredibly intricate has captivated scientists since the 1600s, but no one has accurately simulated their growth until now. Griffeath and Gravner's model not only gets the basic shapes right, including fern-like stars, long needles and chunky prisms, but also fine elements such as tiny ridges that run along the arms and weird, circular surface markings.

Griffeath considers himself part of a long tradition of scientists, starting with famed mathematician and astronomer Johannes Kepler, who have marveled at snowflakes and simply wanted to understand them. But on the practical side, the model could help researchers better predict how various snowflake types in the clouds affect the amount of water reaching earth. Griffeath is now exploring that possibility with a UW-Madison meteorologist.

In the meantime, the project has given him a newfound appreciation for water, whose one-of-a-kind properties are what make snowflakes possible.

"Water is the most amazing molecule in the universe, pure and simple," he says. "It's just three little atoms, but its physics and chemistry are unbelievable."

David Griffeath | EurekAlert!
Further information:
http://www.wisc.edu
http://www.news.wisc.edu/newsphotos/snowflakes/

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>