Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lovely 'snowfakes' mimic nature, advance science

26.02.2009
Exquisitely detailed and beautifully symmetrical, the snowflakes that David Griffeath makes are icy jewels of art.

But don't be fooled; there is some serious science behind the University of Wisconsin-Madison mathematician's charming creations. Although they look as if they tumbled straight from the clouds, these "snowfakes" are actually the product of an elaborate computer model designed to replicate the wildly complex growth of snow crystals.

Four years in the making, the model that Griffeath built with University of California, Davis, mathematician Janko Gravner can generate all of nature's snowflake types in rich three-dimensional detail. In the January issue of Physical Review E, the pair published the model's underlying theory and computations, which are so intensive they are "right on the edge of feasibility," says Griffeath.

"Even though we've artfully stripped down the model over several years so that it's as simple and efficient as possible, it still takes us a day to grow one of these things," he says.

In nature, each snowflake begins as a bit of dust, a bacterium or a pollutant in the sky, around which water molecules start glomming together and freezing to form a tiny crystal of ice. Roughly a quintillion (one million million million) molecules make up every flake, with the shape dictated by temperature, humidity and other local conditions.

How such a seemingly random process produces crystals that are at once geometrically simple and incredibly intricate has captivated scientists since the 1600s, but no one has accurately simulated their growth until now. Griffeath and Gravner's model not only gets the basic shapes right, including fern-like stars, long needles and chunky prisms, but also fine elements such as tiny ridges that run along the arms and weird, circular surface markings.

Griffeath considers himself part of a long tradition of scientists, starting with famed mathematician and astronomer Johannes Kepler, who have marveled at snowflakes and simply wanted to understand them. But on the practical side, the model could help researchers better predict how various snowflake types in the clouds affect the amount of water reaching earth. Griffeath is now exploring that possibility with a UW-Madison meteorologist.

In the meantime, the project has given him a newfound appreciation for water, whose one-of-a-kind properties are what make snowflakes possible.

"Water is the most amazing molecule in the universe, pure and simple," he says. "It's just three little atoms, but its physics and chemistry are unbelievable."

David Griffeath | EurekAlert!
Further information:
http://www.wisc.edu
http://www.news.wisc.edu/newsphotos/snowflakes/

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>