Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lotus Plant-Inspired Dust-Busting Shield to Protect Space Gear

28.09.2009
A plant that lives along muddy waterways in Asia has inspired a NASA team to develop a special coating to prevent dirt and even bacteria from sticking to and contaminating the surfaces of spaceflight gear.

Researchers at NASA's Goddard Space Flight Center in Greenbelt, Md., are developing a transparent coating that prevents dirt from sticking in the same way a lotus plant sheds water — work begun through collaboration with Northrop Grumman Electronics Systems, Linthicum, Md., and nGimat Corporation, Atlanta, Ga. Although a lotus leaf appears smooth, under a microscope, its surface contains innumerable tiny spikes that greatly reduce the area on which water and dirt can attach.

"If you splash lotus leaves with water, it just beads up and rolls off, indicating they have a special hydrophobic or water-repelling ability," said Eve Wooldridge, the James Webb Space Telescope (JWST) Project Contamination and Coatings Lead at Goddard. "This ability also prevents dust from adhering to the leaves."

This special quality is what the NASA team is attempting to replicate to prevent dirt from accumulating on the surfaces of spacesuits, scientific instruments, robotic rovers, solar array panels and other hardware used to gather scientific data or carry out exploratory activities on other objects in the solar system.

The trick is developing a coating that can withstand the harsh space environment.

Originally Developed to Reduce Window Cleaning

The coating was originally developed to reduce the need for window cleaning. Made from silica, zinc oxide, and other oxides, its potential uses on Earth are limitless. It could be applied to car windshields, camera lenses, and eyeglasses — almost anywhere a need exists to repel dirt. Understanding the potential, Northrop Grumman teamed with nGimat to find more applications for the coating technology. The pair ultimately turned to Goddard for its expertise in making equipment ready to endure the harsh space environment.

"Indeed, the ability to replicate these properties could prove invaluable to NASA," said Wanda Peters, Principal Investigator for NASA's lotus coating research and Lead of Goddard’s Coatings Engineering Group. During the Apollo moonwalks, for example, such a technology could have prevented the highly abrasive lunar dust from adhering to astronauts’ spacesuits:

"I think one of the most aggravating, restricting facets of lunar surface exploration is the dust and its adherence to everything no matter what kind of material, whether it be skin, suit material, metal, no matter what it be and its restrictive, friction-like action to everything it gets on," said Apollo 17 Commander Eugene Cernan during the Apollo 17 Technical Crew Debriefing.

"However, the coating as it was originally formulated will not be able to withstand the harsh environmental conditions found in space," Peters said.

The Goddard team has experimented with and tested different formulas to determine their suitability for spaceflight. "No one formula will meet all our needs," added Peters. "For example, the coating that's applied to spacesuits needs to stick to a flexible surface, while a coating developed to protect moving parts needs to be exceptionally durable to resist wear and tear."

The Goddard team has met with exploration systems engineers at NASA's Johnson Spaceflight Center, Houston, Texas, to demonstrate the modified coatings and get mission requirements. Besides spacesuits and moving parts, it could be applied to solar panels and radiators, where cleanliness keeps them operating at their maximum potential.

Addition of Bacteria-Killing Biocide

The team also is trying to partner with Northrop Grumman to add a biocide to the coating, which would kill bacteria that thrive and produce foul odors wherever people are confined to a small space for long periods, like the space station. NASA could apply the same biocide-infused coating on a planetary lander to prevent Earth-borne bacteria from adhering and potentially contaminating the surface of an extraterrestrial object. The team believes this version of the coating may have commercial interest to hospitals as well.

"We are modifying and testing the formula to ensure it can withstand all the challenges our hardware will encounter — extreme temperatures, ultraviolet radiation, solar wind, and electrostatic charging. Outgassing of the coating also must be addressed for use inside astronauts' habitation areas," Peters added. "We also are making sure it remains durable and cleanable in the space environment."

"We have a great team," said Peters. "Goddard is the only NASA center researching this type of coating, and we believe continued research will deliver great benefits to NASA's exploration missions and will produce many positive applications outside NASA."

In addition to Peters and Wooldridge, the Goddard team includes Sharon Straka, Danielle Voce and Kristen McKittrick (wet chemistry development); Marcello Rodriguez (cleaning and durability testing); Craig Jones, Maryjane Stephenson and Scott Freese (characterization testing); Cory Blake Miller (qualification testing); Amani Ginyard (research); Mark Hasegawa and Jack Triolo (coatings formulation consultants); and Lon Kauder (space environmental testing).

This research is also supported by the Exploration Technology Development Program’s Dust Management Project, led and managed by NASA’s Glenn Research Center, Cleveland, and is one of several technologies being assessed and developed by this project for application to space exploration missions.

Bill Steigerwald | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2009/lotus_coating.html#

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>