Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lotus leaf inspires fog-free finish for transparent surfaces

30.07.2012
Inspired by the water-repellent properties of the lotus leaf, a group of scientists in China has discovered a way to impart a fog-free, self-cleaning finish to glass and other transparent materials.

"Superhydrophobic" surfaces, such as the lotus leaf, are excellent at repelling water and also boast other "smart" self-cleaning, anti-glare, anti-icing, and anti-corrosion properties. By using hollow silica nanoparticles that resemble raspberries, scientists at the Chinese Academy of Sciences were able to apply a clear, slick, water-repellent surface to glass.

This is significant in material fields because it means that after modifying low-surface-energy materials and creating surface textures on them, surfaces can be made to exhibit completely different wetting characteristics – either repelling or attracting moisture. As described by the scientists in the American Institute of Physics (AIP) journal Applied Physics Letters, these surfaces show good anti-fogging and light transmittance properties before and after chemical modification, which should help pave the way to a clearer, fog-free performance for windshields, windows, solar cells and panels, LEDs, and even TVs, tablets, and cell phone screens.

Smart surface coatings are highly desirable, especially for solar cells and panels, which frequently lose up to 40 percent of their efficiency to dust and dirt buildup within a year of installation. The next challenge the scientists face is figuring out how to move the smart surfaces from the lab to industry in a cost-efficient manner.

Articles featured in AIP press releases will be freely accessible online for a minimum of 30 days following publication.

Article: "Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging," is published in Applied Physics Letters.

Link: http://apl.aip.org/resource/1/applab/v101/i3/p033701_s1

Authors: Yu Chen (1), Yabin Zhang (2), Lei Shi (1), Jing Li (1), Yan Xin (2), Tingting Yang (2), and Zhiguang Guo (1, 2).

(1) Lanzhou Institute of Chemical Physics (2) Hubei University

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>