Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lotus leaf inspires fog-free finish for transparent surfaces

30.07.2012
Inspired by the water-repellent properties of the lotus leaf, a group of scientists in China has discovered a way to impart a fog-free, self-cleaning finish to glass and other transparent materials.

"Superhydrophobic" surfaces, such as the lotus leaf, are excellent at repelling water and also boast other "smart" self-cleaning, anti-glare, anti-icing, and anti-corrosion properties. By using hollow silica nanoparticles that resemble raspberries, scientists at the Chinese Academy of Sciences were able to apply a clear, slick, water-repellent surface to glass.

This is significant in material fields because it means that after modifying low-surface-energy materials and creating surface textures on them, surfaces can be made to exhibit completely different wetting characteristics – either repelling or attracting moisture. As described by the scientists in the American Institute of Physics (AIP) journal Applied Physics Letters, these surfaces show good anti-fogging and light transmittance properties before and after chemical modification, which should help pave the way to a clearer, fog-free performance for windshields, windows, solar cells and panels, LEDs, and even TVs, tablets, and cell phone screens.

Smart surface coatings are highly desirable, especially for solar cells and panels, which frequently lose up to 40 percent of their efficiency to dust and dirt buildup within a year of installation. The next challenge the scientists face is figuring out how to move the smart surfaces from the lab to industry in a cost-efficient manner.

Articles featured in AIP press releases will be freely accessible online for a minimum of 30 days following publication.

Article: "Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging," is published in Applied Physics Letters.

Link: http://apl.aip.org/resource/1/applab/v101/i3/p033701_s1

Authors: Yu Chen (1), Yabin Zhang (2), Lei Shi (1), Jing Li (1), Yan Xin (2), Tingting Yang (2), and Zhiguang Guo (1, 2).

(1) Lanzhou Institute of Chemical Physics (2) Hubei University

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>