Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The lotus's clever way of staying dry

23.10.2009
An ancient Confucian philosopher once said, "I love the lotus because while growing from mud, it is unstained."

Now, almost one thousand years since Zhou Dunyi wrote these lines in China, scientists finally understand how the plant keeps itself clean and dry. It took an ultra high speed camera, a powerful microscope and an audio speaker to unlock a secret that has puzzled scientists for ages.

The process of solving this biological problem inspired Duke University engineers to make use of man-made surfaces resembling the lotus to improve the efficiency of modern engineering systems, such as power plants or electronic equipment, which must be cooled by removing heat through water evaporation and condensation.

For the first time, scientists were able to observe water as it condensed on the leaf's surface, and more importantly, how the water condensate left the leaf.

The trick lies in the surface of the plant's large leaves, and the subtle vibrations of nature. The leaves are covered with tiny irregular bumps spiked with even tinier hairs projecting upward. When a water droplet lands on this type of surface, it only touches the ends of the tiny hairs. The droplet is buoyed by air pockets below and ultimately is repelled off the leaf.

"We faced a tricky problem – water droplets that fall on the leaf easily roll off, while condensate that grows from within the leaf's nooks and crannies is sticky and remains trapped," said Jonathan Boreyko, a third-year graduate student at Duke's Pratt School of Engineering, who works in the laboratory of assistant professor Chuan-Hua Chen. The results of the team's experiments were published early on-line in the journal Physics Review Letters.

"Scientists and engineers have long wondered how these sticky drops are eventually repelled from the leaf after their impalement into the tiny projections," Boreyko said. "After bringing lotus leaves into the lab and watching the condensation as it formed, we were able to see how the sticky drops became unsticky."

The key was videotaping the process while the lotus leaf rested on top of the woofer portion of a stereo speaker at low frequency. Condensation was created by cooling the leaf. It turned out that after being gently vibrated for a fraction of a second, the sticky droplets gradually unstuck themselves and jumped off the leaf.

Voila, a dry leaf.

"This solves a long-standing puzzle in the field," Chen said. "People have observed that condensation forms every night on the lotus leaf. When they come back in the morning the water is gone and the leaf is dry. The speaker reproduced in the lab what happens every day in nature, which is full of subtle vibrations, especially for the lotus, which has large leaves atop long and slender stems."

The results of these experiments, as well as earlier ones showing for the first time that water droplets spontaneously "jump" off a highly water-repellent, or superhydrophobic, surface, will allow engineers to employ man-made surfaces much like the lotus leaf in settings where the removal of condensation and the transfer of heat are necessary.

We have revealed the physics behind anti-dew superhydrophobicity, a vital property for water-repellent materials to be deployed in the real world," Chen said. "These materials will be used in humid or cold environments where condensation will naturally occur. Our findings point to a new direction to develop water-repellent materials that would survive in demanding natural environments, and have strong implications for a variety of engineering applications including non-sticking textiles, self-cleaning optics and drag-reducing hulls."

Chen's research is supported by startup funds from the Pratt School of Engineering at Duke University.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>