Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lost light from the moon may be sent astray by dusty reflectors

15.04.2010
Light bounced off reflectors on the moon is fainter than expected and mysteriously dims even more whenever the moon is full. Astronomers think dust is a likely culprit, they report in a forthcoming issue of the journal Icarus.

"Near full moon, the strength of the returning light decreases by a factor of ten," said first author Tom Murphy, associate professor of physics at the University of California, San Diego who leads an effort to precisely measure the distance from earth to moon by timing the reflections of pulses of laser light. "Something happens on the surface of the moon to destroy the performance of the reflectors at full moon."

Only a fraction of the light Murphy's team sends to the moon from a telescope in New Mexico returns to the observatory. Earth's atmosphere scatters the outgoing beam so that it spreads over two kilometers of the surface of the moon. Most of the laser light misses its target, which is about the size of a suitcase. And the reflectors diffract returning light so that it spreads over 15 kilometers on earth.

The team only expects to recapture one in 100 million billion particles of light, or photons. But their instrument detects only a tenth as much light returns most nights. And when the moon is full the results are ten times worse.

They aim for polished blocks of glass, about one and half inches in diameter, called corner cube prisms that Apollo astronauts left behind 40 years ago.

For optimum performance, the whole cube must be the same temperature. "It doesn't take much, just a few degrees, to significantly affect performance," Murphy said. NASA engineers took pains to minimize differences in temperatures across the prisms, which rest in arrays tilted toward earth. Individual prisms sit in recessed pockets so that they are shielded from direct light when the sun is low on the moon's horizon. But when the full face of the moon appears illuminated from earth, the sun is directly above the arrays. "At full moon, the sun is coming straight down the pipe into these recessed pockets," Murphy said.

The cubes are clear glass without any sort of coating. Their reflective properties derive from the shape of their polished facets. NASA engineers chose the design, rather that one with a silvered back like an ordinary mirror, for precision. Uneven heating of the prisms, which might occur with absorption by a coating, would bend the shape of the light pulses they return, interfering with the accuracy of measurements.

Murphy thinks the cubes are heating unevenly at full moon and that a likely cause is dust. "Dust is dark," he said. "It absorbs solar light and would warm the cube prism on the front face."

Light travels faster through warmer glass. Although all paths through the cube prisms are the same length, photons that strike the edge of the reflector will stay near the surface, and those that strike the center will pass deeper into the cube before hitting a reflective surface. If the surface is warmer than the deeper parts of the cube, light striking the edges of the prism will re-emerge sooner than light striking the center, distorting the shape of the reflected laser pulses. "Outgoing light is deformed. It's spreading," Murphy said. "All you have to do is make a thermal gradient and you get the problem."

The moon has no atmosphere, and no wind, but electrostatic forces can move dust around. A constant rain of micrometeorites might puff dust onto the surface. Larger impacts that eject material from the surface across a greater distance could also contribute to an accretion of moon crud. Deposits from outgassing of the Teflon rings that hold each prism in place might also have accumulated on the back side of the prisms, the authors say.

Sorting out which effect might play a role will be difficult. Murphy recently returned from a trip to Italy, where a chamber built to simulate lunar conditions may help sort through the possible explanations.

"We think we have a thermal problem at full moon, plus optical loss at all phases of the moon," Murphy said. Dust on the front surface of the reflectors could account for both observations.

If sunlight-heated dust is really to blame, the effect should vanish during a lunar eclipse. That is, light should bounce back while the moon passes through Earth's shadow, then dim again as sunlight hits the arrays.

"Measurements during an eclipse – there are just a few – look fine. When you remove the solar flux, the reflectors recover quickly, on a time scale of about half an hour," Murphy said.

The problem may be getting worse. The McDonald Observatory was able to run similar experiments at full moon between 1973 and 1976. But between 1979 and 1984, they had "a bite taken out of their data," during full moons, Murphy said. "Ours is deeper."

So far, rotten weather has prevented the project from operating during a lunar eclipse. The next opportunity will be on the night of December 21, 2010. The team plans to be watching.

Co-authors include E.L. Michelsen and R.L. Samad of UCSD, E.G. Adelberger and H.E. Swanson of the University of Washington, J.B.R. Battat of MIT, C.D. Hoyle of Humboldt State University in Arcata, Calif., R.J McMillan of Apache Point Observatory in Sunspot, N.M., and C.W. Stubbs of Harvard University.

The National Science Foundation and NASA fund the APOLLO project.

Tom Murphy | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>