Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lost light from the moon may be sent astray by dusty reflectors

15.04.2010
Light bounced off reflectors on the moon is fainter than expected and mysteriously dims even more whenever the moon is full. Astronomers think dust is a likely culprit, they report in a forthcoming issue of the journal Icarus.

"Near full moon, the strength of the returning light decreases by a factor of ten," said first author Tom Murphy, associate professor of physics at the University of California, San Diego who leads an effort to precisely measure the distance from earth to moon by timing the reflections of pulses of laser light. "Something happens on the surface of the moon to destroy the performance of the reflectors at full moon."

Only a fraction of the light Murphy's team sends to the moon from a telescope in New Mexico returns to the observatory. Earth's atmosphere scatters the outgoing beam so that it spreads over two kilometers of the surface of the moon. Most of the laser light misses its target, which is about the size of a suitcase. And the reflectors diffract returning light so that it spreads over 15 kilometers on earth.

The team only expects to recapture one in 100 million billion particles of light, or photons. But their instrument detects only a tenth as much light returns most nights. And when the moon is full the results are ten times worse.

They aim for polished blocks of glass, about one and half inches in diameter, called corner cube prisms that Apollo astronauts left behind 40 years ago.

For optimum performance, the whole cube must be the same temperature. "It doesn't take much, just a few degrees, to significantly affect performance," Murphy said. NASA engineers took pains to minimize differences in temperatures across the prisms, which rest in arrays tilted toward earth. Individual prisms sit in recessed pockets so that they are shielded from direct light when the sun is low on the moon's horizon. But when the full face of the moon appears illuminated from earth, the sun is directly above the arrays. "At full moon, the sun is coming straight down the pipe into these recessed pockets," Murphy said.

The cubes are clear glass without any sort of coating. Their reflective properties derive from the shape of their polished facets. NASA engineers chose the design, rather that one with a silvered back like an ordinary mirror, for precision. Uneven heating of the prisms, which might occur with absorption by a coating, would bend the shape of the light pulses they return, interfering with the accuracy of measurements.

Murphy thinks the cubes are heating unevenly at full moon and that a likely cause is dust. "Dust is dark," he said. "It absorbs solar light and would warm the cube prism on the front face."

Light travels faster through warmer glass. Although all paths through the cube prisms are the same length, photons that strike the edge of the reflector will stay near the surface, and those that strike the center will pass deeper into the cube before hitting a reflective surface. If the surface is warmer than the deeper parts of the cube, light striking the edges of the prism will re-emerge sooner than light striking the center, distorting the shape of the reflected laser pulses. "Outgoing light is deformed. It's spreading," Murphy said. "All you have to do is make a thermal gradient and you get the problem."

The moon has no atmosphere, and no wind, but electrostatic forces can move dust around. A constant rain of micrometeorites might puff dust onto the surface. Larger impacts that eject material from the surface across a greater distance could also contribute to an accretion of moon crud. Deposits from outgassing of the Teflon rings that hold each prism in place might also have accumulated on the back side of the prisms, the authors say.

Sorting out which effect might play a role will be difficult. Murphy recently returned from a trip to Italy, where a chamber built to simulate lunar conditions may help sort through the possible explanations.

"We think we have a thermal problem at full moon, plus optical loss at all phases of the moon," Murphy said. Dust on the front surface of the reflectors could account for both observations.

If sunlight-heated dust is really to blame, the effect should vanish during a lunar eclipse. That is, light should bounce back while the moon passes through Earth's shadow, then dim again as sunlight hits the arrays.

"Measurements during an eclipse – there are just a few – look fine. When you remove the solar flux, the reflectors recover quickly, on a time scale of about half an hour," Murphy said.

The problem may be getting worse. The McDonald Observatory was able to run similar experiments at full moon between 1973 and 1976. But between 1979 and 1984, they had "a bite taken out of their data," during full moons, Murphy said. "Ours is deeper."

So far, rotten weather has prevented the project from operating during a lunar eclipse. The next opportunity will be on the night of December 21, 2010. The team plans to be watching.

Co-authors include E.L. Michelsen and R.L. Samad of UCSD, E.G. Adelberger and H.E. Swanson of the University of Washington, J.B.R. Battat of MIT, C.D. Hoyle of Humboldt State University in Arcata, Calif., R.J McMillan of Apache Point Observatory in Sunspot, N.M., and C.W. Stubbs of Harvard University.

The National Science Foundation and NASA fund the APOLLO project.

Tom Murphy | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>