Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-sought connection found between Saturn’s aurora and puzzling radio pulses

05.08.2010
The ethereal ultraviolet glow, or aurora, that illuminates Saturn’s upper atmosphere near the planet’s poles is pulsing, recent observations show. What’s more, the glow waxes and wanes in conjunction with perplexing radio emissions that also emanate from the ringed planet.

For years, scientists have puzzled over inexplicable variations in the timing of those radio pulsations. Now, the new-found aurora behaviour may offer a vital clue to what is going on.

“This is an important discovery because it provides a long-suspected, but hitherto missing, link between the radio and auroral emissions,” said Jonathan Nichols, a physics and astronomy researcher at the University of Leicester who led the study.

Saturn, like other magnetized planets, emits radio waves into space from the polar regions. These radio emissions pulse with a period near to 11 hours, and the timing of the pulses was originally thought to represent the rotation of the planet. However, over the years since the Voyager satellite missions, which flew past Saturn in 1980 and 1981, the period of the pulsing of the radio emissions has varied. Since the rotation of a planet cannot be easily sped up or slowed down, the hunt for the source of the varying radio period has become one of the most perplexing puzzles in planetary science.

Now, in a paper to be published in Geophysical Research Letters, a publication of the American Geophysical Union, the researchers use images from the NASA/ESA Hubble Space Telescope of Saturn’s auroras obtained between 2005-2009 to show that the auroras pulse in tandem with the radio emissions.

Auroras, known as the northern and southern lights on Earth, are caused when charged particles in space are funnelled along a planet’s magnetic field into the planet’s upper atmosphere near the poles, whereupon they impact the atmosphere, causing them to glow. This happens when a planet’s magnetic field is stressed by, for example, the buffeting from the stream of particles emitted by the Sun, or when moons such as Enceladus or Io expel material into the near-planet space.

Saturn’s radio waves were long suspected to be emitted by the charged particles as they hurtle toward the poles, but no radio-like pulsing had been observed in Saturn’s aurora.

However, Nichols and his colleagues found that by using the timing of the radio pulses as a guide to organizing auroral data, and by stacking the results from all the Hubble Saturn auroral images from 2005-2009 on top of each other, the auroral pulses finally revealed themselves.

“This link is important since it implies that the pulsing of the radio emissions is being imparted by the processes driving Saturn’s aurora, which in turn can be studied by the NASA/ESA spacecraft Cassini, presently in orbit around Saturn,” Nichols said. “It thus takes us a significant step toward solving the mystery of the variable radio period.”

Title:
“Variation of Saturn's UV aurora with SKR phase”
Author:
J. D. Nichols, Department of Physics and Astronomy, University of Leicester, Leicester, UK
Contact information for the author:
Dr Jonathan Nichols, University of Leicester Radio and Space Plasma Physics Group, +44 (0)116 252 5049, jdn@ion.le.ac.uk

Kathleen O’Neil | University of Leicester
Further information:
http://www.le.ac.uk
http://www.agu.org/news/press/pr_archives/2010/2010-21.shtml

Further reports about: Geophysical Hubble Long-sought NASA/ESA Saturn Saturn’s Space magnetic field polar region radio waves

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>