Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-range tunneling of quantum particles

13.06.2014

The quantum tunnel effect manifests itself in a multitude of well-known phenomena.


Quantum particles transmit through a whole series of barriers under conditions where a single particle could not do the move. Illustration: Uni Innsbruck

Experimental physicists in Innsbruck, Austria, have now directly observed quantum particles transmitting through a whole series of up to five potential barriers under conditions where a single particle could not do the move.

One of the most remarkable consequences of the rules in quantum mechanics is the capability of a quantum particle to penetrate through a potential barrier even though its energy would not allow for the corresponding classical trajectory. This is known as the quantum tunnel effect and manifests itself in a multitude of well-known phenomena.

For example, it explains nuclear radioactive decay, fusion reactions in the interior of stars, and electron transport through quantum dots. Tunneling also is at the heart of many technical applications, for instance it allows for imaging of surfaces on the atomic length scale in scanning tunneling microscopes.

All the above systems have in common that they essentially represent the very fundamental paradigm of the tunnel effect: a single particle that penetrates through a single barrier. Now, the team of Hanns-Christoph Nägerl, Institute for Experimental Physics of the University of Innsbruck, Austria, has directly observed tunneling dynamics in a much more intriguing system:

They see quantum particles transmitting through a whole series of up to five potential barriers under conditions where a single particle could not do the move. Instead the particles need to help each other via their strong mutual interactions and via an effect known as Bose enhancement.

In their experiment the scientists place a gas of Cesium atoms at extremely low temperatures just above absolute zero temperature into a potential landscape that is deliberately engineered by laser light. This so-called optical lattice forms a regular and perfect structure constituting the multiple tunneling barriers, similar to a washboard.

As temperatures are so low and thus the atoms’ kinetic energies are so tiny, the only way to move across the washboard is via tunneling through the barriers. The tunneling motion is initiated by applying a directed force onto the atoms along one of the lattice axes, that is, by tilting the washboard.

It is now one of the crucial points in the experiment that the physicists control through how many barriers the particles penetrate by the interplay between the interaction and the strength of the force in conjunction with Bose enhancement as a result of the particles’ quantum indistinguishability.

Very similar to a massive object moving in the earth’s gravitational field, the tunneling atoms should loose potential energy when they move down the washboard. But where can they deposit this energy in such a perfect and frictionless environment?

It’s the interaction energy between the atoms when they share the same site of the lattice that compensates for the potential energy. As a result, the physicists found that the tunneling motion leads to discrete resonances corresponding to the number of barriers the particles penetrate through.

It is left for the future to explore the role of such long-range tunneling processes for lattice systems with ultracold atoms in the context of quantum simulation and quantum information processing, or for different physical settings, for instance electronic quantum devices, molecular or even biological systems.

Publication: Observation of many-body dynamics in long-range tunneling after a quantum quench. Florian Meinert, Manfred J. Mark, Emil Kirilov, Katharina Lauber, Philipp Weinmann, Michael Gröbner, Andrew J. Daley, Hanns-Christoph Nägerl. Science 2014 DOI: 10.1126/science.1248402 (arXiv:1312.2758)

Contact
Univ.-Prof. Dr. Hanns-Christoph Nägerl
Institute for Experimental Physics
University of Innsbruck
phone: +43 512 507 52420
email: christoph.naegerl@uibk.ac.at

Christian Flatz
Public Relations
University of Innsbruck
phone: +43 512 507 32022
email: christian.flatz@uibk.ac.at

Weitere Informationen:

http://dx.doi.org/10.1126/science.1248402 - Observation of many-body dynamics in long-range tunneling after a quantum quench. Florian Meinert, Manfred J. Mark, Emil Kirilov, Katharina Lauber, Philipp Weinmann, Michael Gröbner, Andrew J. Daley, Hanns-Christoph Nägerl. Science 2014

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht Single laser stops molecular tumbling motion instantly
02.09.2014 | Northwestern University

nachricht Doing More with Less: New Technique Uses Fraction of Measurements to Efficiently Find Quantum Wave Functions
01.09.2014 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

IT security in the digital society

27.08.2014 | Event News

Understanding the brain—neuroscientists meet in Göttingen

27.08.2014 | Event News

MEDICA EDUCATION CONFERENCE: Bessere Behandlung dank Biomarker

21.08.2014 | Event News

 
Latest News

A smart fluorescent antenna for Wi-Fi applications

02.09.2014 | Power and Electrical Engineering

Blowfly maggots provide physical evidence for forensic cases

02.09.2014 | Life Sciences

Single laser stops molecular tumbling motion instantly

02.09.2014 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>