Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long duration experiments reach 1,000th day

04.07.2017

World's longest running synchrotron light experiment reveals long-term behavior of nuclear waste cement

The first experiment placed on Diamond's Long Duration Experimental (LDE) facility, on beamline I11, has now been in place for 1,000 days. The experiment, led by Dr Claire Corkhill from the University of Sheffield, has used the world-leading capabilities of the beamline to investigate the hydration of cements used by the nuclear industry for the storage and disposal of waste.


Cement samples on the I11 beamline.

Credit: Diamond Light Source

"Understanding the rate at which hydration occurs in cement, a process that can take anywhere up to 50 years, is very important to help us predict the behaviours of cement in the long term," explained Dr Corkhill.

"These cements are being used to safely lock away the radioactive elements in nuclear waste for timescales of more than 10,000 years, so it is extremely important that we can accurately predict the properties of these materials in the future. The unique facility at Diamond has allowed us to follow this reaction in situ, for 1000 days, and the data is already allowing us to identify particular phases that will safely lock away radioactive elements in 100 years' time, something we would otherwise not have been able to determine."

Dr Corkhill is planning to return to Diamond to investigate the reaction of these phases with uranium, technetium and plutonium on one of Diamond's X-ray absorption spectroscopy beamlines, B18.

"Synchrotron light allows us a window into the chemistry of these materials that have a very important role in the safe disposal of nuclear waste that just isn't available through any other techniques," Corkhill added.

The LDE was commissioned in 2014, with the first experiment being placed on the beamline on the 6th October 2014. Since then, the samples have been put into the beamline periodically to capture data on any changes. Other experiments have included looking at looking at power cycling in batteries and ice crystal formation.

"Seeing long duration experiments in the facility is very pleasing," concludes Professor Chiu Tang, Principal Beamline Scientist. "That we can demonstrate experiments over 1,000 days is a testament to how well we've engaged with our user community, enabling them to use synchrotron light to probe the frontiers of science."

###

For further information, please contact:

Steve Pritchard

Senior Press Officer
Diamond Light Source Ltd.
Diamond House
Harwell Science & Innovation Campus
Didcot
Oxfordshire
OX11 0DE
United Kingdom
+441235567539

Media Contact

Steve Pritchard
steve.pritchard@diamond.ac.uk
44-123-556-7539

http://www.diamond.ac.uk 

Steve Pritchard | EurekAlert!

More articles from Physics and Astronomy:

nachricht Moon's crust underwent resurfacing after forming from magma ocean
22.11.2017 | University of Texas at Austin

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>