Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-distance transport of green power: First successful testing of a 20 kA superconducting cable

11.03.2014

The growing deployment of renewable energy sources (RES) will have to be accompanied by a significant expansion of the electricity grids.

The places where the generation of energy from wind, solar or hydro would be most economically competitive are often located in remote areas (offshore wind for example), distant from the densely populated zones where the energy is needed.


The test station at CERN

In this perspective, the Institute for Advanced Sustainability Studies (IASS) together with CERN (European European Organization for Nuclear Research) reached an important milestone on February 20th with the successful testing of a prototype superconducting cable able to carry 20 kA of current.

Nobel Laureate and IASS Scientific Director Carlo Rubbia commented on this result: “This is really a breakthrough. For the first time, we have a real cable which offers a practical way of transporting large amounts electricity over long distances, using a simple configuration and cheap, widely available materials”.

The experiment, which was the first of its kind, took place in the laboratories of CERN in the framework of an IASS-CERN collaboration aimed at assessing the potential of electric power cables based on the superconducting material magnesium diboride (MgB2). The tested configuration consists of two very thin, 20 m-long MgB2 cables combined in series for direct current (DC) transmission, and placed inside a semi-flexible cryostat that uses helium gas to maintain the very low temperatures required to enable superconductivity.

During this latest test, the cable setup, which has a total diameter of only 16 cm, housed two MgB2 cables able to transfer a current of 20 kA at low temperatures of about 24 K, and showed very good and homogeneous superconducting properties.

In the future, this type of superconducting cable could be installed underground, with periodically spaced cryogenic stations; a technology that is similar to the widespread natural gas distribution grid. It would achieve capacities of 2 to 10 GW, or even higher, with operating voltages that can be tailored for optimised performance. To give an example, the planned German Suedlink transmission line, meant to connect the North Sea to Lower Fraconia, would have a capacity of 4 GW with a subsequent uprating to 12 GW by 2032 (Netzentwicklungsplan).

In comparison to the alternatives, these superconducting underground cables would provide several significant advantages ranging from efficiency, cost, ease of implementation and environmental impact. First of all, superconducting materials like MgB2 are able to transmit electrical power without incurring resistive losses, which on the contrary affect conventional HVDC (and AC) lines and increase with the length of the line. Fewer losses translate into increased economic profitability and better resource management, as less energy is wasted.

Another distinctive feature of MgB2 SC cables is their small size: the whole installation for a 4 GW 800 km-long bi-polar cable, including the cryogenic envelope, is expected to have a total diameter of about 30 cm, which is less than most existing natural gas pipelines and much smaller than the corridor width needed for standard HVDC underground cables (about 20 m for 10 GW in central Europe). These latter also suffer from heat dispersion issues that severely limit the maximum capacity and have negative consequences for soils; in the case of SC cables, this drawback is entirely eliminated.

Finally, the choice of underground cables instead of overhead lines carries the usual benefits: it enables underwater crossings and transmission within densely populated areas and avoids the need to build massive transmission towers. Public opposition to invasive and environmentally harmful overhead lines has become an important factor in the decision-making process regarding grid expansion projects. Therefore, the search for technological alternatives is paramount. Additionally, existing rights-of-way could be used to install SC cables.

The first cost estimates show that the investment costs for the construction of a 4 GW MgB2 transmission line would be up to several times lower than for a standard ±320 kV HVDC underground cable, and competitive with HVDC overhead lines. The relatively low cost of MgB2 SC cables stems from their low cost per kA and meter (due to inexpensive materials) and simple manufacturing process.

Presently, IASS and CERN are pioneering the development of MgB2 cables. The results of the recent test have confirmed the promising nature of magnesium diboride, especially with respect to alternative materials like the expensive high-temperature superconductors (HTS). Additional tests of the prototype cable are planned in the coming weeks with the purpose of conducting further measurements and experimenting under various conditions. In parallel to these experimental activities, IASS has established contacts with partners from European industries and transmission operators in order to undertake the next steps in the R&D process and move towards industrial application.

Weitere Informationen:

http://www.iass-potsdam.de
http://www.iass-potsdam.de/research-clusters/earth-energy-and-environment-e3/sci...

Corina Weber | idw - Informationsdienst Wissenschaft

Further reports about: CERN HVDC IASS Sustainability capacity construction diameter materials temperatures underground

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>