Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Long-distance transport of green power: First successful testing of a 20 kA superconducting cable


The growing deployment of renewable energy sources (RES) will have to be accompanied by a significant expansion of the electricity grids.

The places where the generation of energy from wind, solar or hydro would be most economically competitive are often located in remote areas (offshore wind for example), distant from the densely populated zones where the energy is needed.

The test station at CERN

In this perspective, the Institute for Advanced Sustainability Studies (IASS) together with CERN (European European Organization for Nuclear Research) reached an important milestone on February 20th with the successful testing of a prototype superconducting cable able to carry 20 kA of current.

Nobel Laureate and IASS Scientific Director Carlo Rubbia commented on this result: “This is really a breakthrough. For the first time, we have a real cable which offers a practical way of transporting large amounts electricity over long distances, using a simple configuration and cheap, widely available materials”.

The experiment, which was the first of its kind, took place in the laboratories of CERN in the framework of an IASS-CERN collaboration aimed at assessing the potential of electric power cables based on the superconducting material magnesium diboride (MgB2). The tested configuration consists of two very thin, 20 m-long MgB2 cables combined in series for direct current (DC) transmission, and placed inside a semi-flexible cryostat that uses helium gas to maintain the very low temperatures required to enable superconductivity.

During this latest test, the cable setup, which has a total diameter of only 16 cm, housed two MgB2 cables able to transfer a current of 20 kA at low temperatures of about 24 K, and showed very good and homogeneous superconducting properties.

In the future, this type of superconducting cable could be installed underground, with periodically spaced cryogenic stations; a technology that is similar to the widespread natural gas distribution grid. It would achieve capacities of 2 to 10 GW, or even higher, with operating voltages that can be tailored for optimised performance. To give an example, the planned German Suedlink transmission line, meant to connect the North Sea to Lower Fraconia, would have a capacity of 4 GW with a subsequent uprating to 12 GW by 2032 (Netzentwicklungsplan).

In comparison to the alternatives, these superconducting underground cables would provide several significant advantages ranging from efficiency, cost, ease of implementation and environmental impact. First of all, superconducting materials like MgB2 are able to transmit electrical power without incurring resistive losses, which on the contrary affect conventional HVDC (and AC) lines and increase with the length of the line. Fewer losses translate into increased economic profitability and better resource management, as less energy is wasted.

Another distinctive feature of MgB2 SC cables is their small size: the whole installation for a 4 GW 800 km-long bi-polar cable, including the cryogenic envelope, is expected to have a total diameter of about 30 cm, which is less than most existing natural gas pipelines and much smaller than the corridor width needed for standard HVDC underground cables (about 20 m for 10 GW in central Europe). These latter also suffer from heat dispersion issues that severely limit the maximum capacity and have negative consequences for soils; in the case of SC cables, this drawback is entirely eliminated.

Finally, the choice of underground cables instead of overhead lines carries the usual benefits: it enables underwater crossings and transmission within densely populated areas and avoids the need to build massive transmission towers. Public opposition to invasive and environmentally harmful overhead lines has become an important factor in the decision-making process regarding grid expansion projects. Therefore, the search for technological alternatives is paramount. Additionally, existing rights-of-way could be used to install SC cables.

The first cost estimates show that the investment costs for the construction of a 4 GW MgB2 transmission line would be up to several times lower than for a standard ±320 kV HVDC underground cable, and competitive with HVDC overhead lines. The relatively low cost of MgB2 SC cables stems from their low cost per kA and meter (due to inexpensive materials) and simple manufacturing process.

Presently, IASS and CERN are pioneering the development of MgB2 cables. The results of the recent test have confirmed the promising nature of magnesium diboride, especially with respect to alternative materials like the expensive high-temperature superconductors (HTS). Additional tests of the prototype cable are planned in the coming weeks with the purpose of conducting further measurements and experimenting under various conditions. In parallel to these experimental activities, IASS has established contacts with partners from European industries and transmission operators in order to undertake the next steps in the R&D process and move towards industrial application.

Weitere Informationen:

Corina Weber | idw - Informationsdienst Wissenschaft

Further reports about: CERN HVDC IASS Sustainability capacity construction diameter materials temperatures underground

More articles from Physics and Astronomy:

nachricht Listening to the Extragalactic Radio
13.10.2015 | Max-Planck-Institut für Radioastronomie

nachricht Scientists paint quantum electronics with beams of light
12.10.2015 | University of Chicago

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Smart clothing, mini-eyes, and a virtual twin – Artificial Intelligence at ICT 2015

13.10.2015 | Trade Fair News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

More VideoLinks >>>