Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Living Fossils Hold Record of ‘Supermassive’ Kick

14.07.2009
Star clusters point to black holes ejected from host galaxies

The tight cluster of stars surrounding a supermassive black hole after it has been violently kicked out of a galaxy represents a new kind of astronomical object and a fossil record of the kick.

A paper published in the July 10 issue of The Astrophysical Journal discusses the theoretical properties of “hypercompact stellar systems” and suggests that hundreds of these faint star clusters might be detected at optical wavelengths in our immediate cosmic environment.

Some of these objects may already have been picked up in astronomical surveys, reports David Merritt, from Rochester Institute of Technology, Jeremy Schnittman, from Johns Hopkins University, and Stefanie Komossa, from the Max-Planck-Institut for Extraterrestrial Physics in Germany.

Hypercompact stellar systems result when a supermassive black hole is violently ejected from a galaxy, following a merger with another supermassive black hole. The evicted black hole rips stars from the galaxy as it is thrown out. The stars closest to the black hole move in tandem with the massive object and become a permanent record of the velocity at which the kick occurred.

“You can measure how big the kick was by measuring how fast the stars are moving around the black hole,” says Merritt, professor of physics at RIT. “Only stars orbiting faster than the kick velocity remain attached to the black hole after the kick. These stars carry with them a kind of fossil record of the kick, even after the black hole has slowed down. In principle, you can reconstruct the properties of the kick, which is nice because there would be no other way to do it.”

“Finding these objects would be like discovering DNA from a long-extinct species,” adds Komossa.

The best place to find hypercompact stellar systems, the authors argued, is in cluster of galaxies like the nearby Coma and Virgo clusters. These dense regions of space contain thousands of galaxies that have been merging for a long time. Merging galaxies result in merging black holes, which is a prerequisite for the kicks.

“Even if the black hole gets kicked out of one galaxy, it’s still going to be gravitationally bound to the whole cluster of galaxies,” Merritt says. “The total gravity of all the galaxies is acting on that black hole. If it was ever produced, it’s still going to be there somewhere in that cluster.”

Merritt and his co-authors think that scientists may have already seen hypercompact stellar systems and not realized it. These objects would be easy to mistake for common star systems like globular clusters. The key signature making hypercompact stellar systems unique is a high internal velocity. This is detectable only by measuring the velocities of stars moving around the black hole, a difficult measurement that would require a long time exposure on a large telescope.

From time to time, a hypercompact stellar system will make its presence known in a much more dramatic way, when one of the stars is tidally disrupted by the supermassive black hole. In this case, gravity stretches the star and sucks it into the black hole. The star is torn apart, causing a beacon-like flare that signals a black hole. The possibility of detecting one of these “recoil flares” was first discussed in an August 2008 paper by co-authors Merritt and Komossa.

“The only contact of these floating black holes with the rest of the universe is through their armada of stars,” Merritt says, “with an occasional display of stellar fireworks to signal ‘here we are.’”

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>