Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lithium-Based Neutron Detector Named Among Top 100 Technologies of the Year

15.08.2014

Kansas State University engineers have developed a lithium-based neutron detector that is being recognized as one of the year's Top 100 newly developed technologies.

R&D Magazine is recognizing Douglas McGregor, professor of mechanical and nuclear engineering, and his research team with a 2014 R&D 100 Award. The award recognizes the year's 100 most significant high-technology new products.


Kansas State University

Kansas State University engineers have developed a lithium-based neutron detector that is being recognized as one of the year's Top 100 newly developed technologies.

The university-developed lithium-based neutron detector, called the Li-Foil Neutron Detector, can be used for medical imaging, national security, scientific research, oil well logging and the automotive industry.

"We are honored to receive this international recognition for the collaborative efforts of students, faculty and researchers on our team," McGregor said. "All of the members of our team have worked very hard to advance this technology and take it to a whole new level. We continue to improve it and develop newer models."

An R&D 100 Award signifies that a product has merit as one of the most innovative new ideas of the year, nationally and internationally, and is recognized as a mark of excellence by national laboratories, universities, industrial companies and government agencies. The award honors technology developments that are designed to meet current or future societal, scientific or business challenges.

Researchers in McGregor's Semiconductor Materials and Radiological Technologies Laboratory, or SMART Laboratory, created the Li-Foil neutron detector. Other researchers involved include Kyle Nelson, research associate in mechanical and nuclear engineering; Steven Bellinger, research associate in mechanical and nuclear engineering; Niklas Hinson, recent bachelor's graduate in mechanical engineering, Goddard; and Benjamin Montag, doctoral student in nuclear engineering, Manhattan.

Nelson, who worked on the research for his doctoral project, created the neutron detector by stacking very thin sheets of lithium foil between multiple electrodes. Lithium-based neutron detectors are more cost-effective than helium-3 based neutron detectors.

"The relatively low cost of the detector is a direct result of the advancements in lithium foil manufacturing in the lithium battery industry," Nelson said.

Helium-3 is often used in neutron-based technology, but is rare and expensive, McGregor said. Lithium-6 is a metal that is highly reactive with neutrons and Kansas State University researchers have shown that it is a good alternative for neutron detection.

As a result, the lithium-based detector has several different applications, including stationary detectors that can be used at U.S. ports of entry, mobile backpack neutron detectors, and handheld devices.

"Our lithium-based technology seems to solve many of the problems in neutron detection," Nelson said. "Because lithium is less expensive, we have the capability to make some of the stationary detectors as big as bookshelves, which can help the detectors be even more accurate."

Bellinger, who founded the Manhattan-based start-up company called Radiation Detection Technologies Inc., is helping with the commercialization of the neutron detector. Saint Gobain Corp. also is helping to commercialize the technology.

The engineers have one patent on the research, with another patent pending, and continue to improve the technology behind the neutron detectors. Their work has been supported by the Defense Threat Reduction Agency.

Read more at http://www.k-state.edu/media/newsreleases/aug14/detector81314.html

Contact Information

Jennifer Torline Tidball
Science/Research writer
jtidball@k-state.edu
Phone: 785-532-0847

Jennifer Torline Tidball | newswise

Further reports about: Laboratory Neutron Phone R&D Radiological accurate detector electrodes

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>