Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lithium-Based Neutron Detector Named Among Top 100 Technologies of the Year

15.08.2014

Kansas State University engineers have developed a lithium-based neutron detector that is being recognized as one of the year's Top 100 newly developed technologies.

R&D Magazine is recognizing Douglas McGregor, professor of mechanical and nuclear engineering, and his research team with a 2014 R&D 100 Award. The award recognizes the year's 100 most significant high-technology new products.


Kansas State University

Kansas State University engineers have developed a lithium-based neutron detector that is being recognized as one of the year's Top 100 newly developed technologies.

The university-developed lithium-based neutron detector, called the Li-Foil Neutron Detector, can be used for medical imaging, national security, scientific research, oil well logging and the automotive industry.

"We are honored to receive this international recognition for the collaborative efforts of students, faculty and researchers on our team," McGregor said. "All of the members of our team have worked very hard to advance this technology and take it to a whole new level. We continue to improve it and develop newer models."

An R&D 100 Award signifies that a product has merit as one of the most innovative new ideas of the year, nationally and internationally, and is recognized as a mark of excellence by national laboratories, universities, industrial companies and government agencies. The award honors technology developments that are designed to meet current or future societal, scientific or business challenges.

Researchers in McGregor's Semiconductor Materials and Radiological Technologies Laboratory, or SMART Laboratory, created the Li-Foil neutron detector. Other researchers involved include Kyle Nelson, research associate in mechanical and nuclear engineering; Steven Bellinger, research associate in mechanical and nuclear engineering; Niklas Hinson, recent bachelor's graduate in mechanical engineering, Goddard; and Benjamin Montag, doctoral student in nuclear engineering, Manhattan.

Nelson, who worked on the research for his doctoral project, created the neutron detector by stacking very thin sheets of lithium foil between multiple electrodes. Lithium-based neutron detectors are more cost-effective than helium-3 based neutron detectors.

"The relatively low cost of the detector is a direct result of the advancements in lithium foil manufacturing in the lithium battery industry," Nelson said.

Helium-3 is often used in neutron-based technology, but is rare and expensive, McGregor said. Lithium-6 is a metal that is highly reactive with neutrons and Kansas State University researchers have shown that it is a good alternative for neutron detection.

As a result, the lithium-based detector has several different applications, including stationary detectors that can be used at U.S. ports of entry, mobile backpack neutron detectors, and handheld devices.

"Our lithium-based technology seems to solve many of the problems in neutron detection," Nelson said. "Because lithium is less expensive, we have the capability to make some of the stationary detectors as big as bookshelves, which can help the detectors be even more accurate."

Bellinger, who founded the Manhattan-based start-up company called Radiation Detection Technologies Inc., is helping with the commercialization of the neutron detector. Saint Gobain Corp. also is helping to commercialize the technology.

The engineers have one patent on the research, with another patent pending, and continue to improve the technology behind the neutron detectors. Their work has been supported by the Defense Threat Reduction Agency.

Read more at http://www.k-state.edu/media/newsreleases/aug14/detector81314.html

Contact Information

Jennifer Torline Tidball
Science/Research writer
jtidball@k-state.edu
Phone: 785-532-0847

Jennifer Torline Tidball | newswise

Further reports about: Laboratory Neutron Phone R&D Radiological accurate detector electrodes

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>