Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listening for ocean spills and their ecological effects

17.11.2010
Acoustic technologies for detecting oil in water presented at 2nd Pan-American/Iberian Meeting on Acoustics

Scientists who study acoustics (the "science of sound") have over the years developed a variety of techniques to probe the hidden depths of oceans. This week, many of these acoustic researchers will come together to discuss how these technologies were used to monitor April's Deepwater Horizon oil spill, to present new data on the gusher's ecological impacts, and to highlight new techniques under development that could improve our ability to detect oil in ocean water.

This special session will take place on November 17, 2010 at the 2nd Pan-American/Iberian Meeting on Acoustics, a major conference on the science and technology of acoustics held in Cancun, Mexico.

Some of these researchers will be presenting original data on the spill itself and its environmental impact.

Thomas Weber and colleagues at the University of New Hampshire in Durham and the National Oceanic and Atmospheric Administration's Alaska Fisheries Science Center and Office of Coast Surveys will talk about Deepwater spill data collected using acoustic technologies originally developed for researching fisheries. For more information on this presentation, see their lay-language paper: http://www.acoustics.org/press/160th/weber.htm

When the deep wellhead burst, Natalia Sidorovskaia of the University of Louisiana at Lafayette found herself in a unique position. As a member of the Littoral Acoustics Demonstration Center of the University of Southern Mississippi, she had been part of a team listening to the waters near this rig for 9 years -- using underwater microphones (hydrophone) to count sperm whales and beaked whales in the area.

"One of our sites was only 9 miles away from the Deepwater Horizon site, said Sidorovskaia.

Thanks to a rapid response award from the National Science Foundation and ship time donated by Greenpeace, Sidorovskaia and two mathematicians were able to revisit to these waters in September and spend a week collecting post-spill data.

By comparing this data to their pre-spill studies, the scientists hope to get an idea of whether the number of whales in the area has changed. They plan to present this new analysis in their talk on November 17.

"Our estimations agree with NOAA's -- about 1,655 sperm whales before the spill," said Sidorovskaia. "If we killed 3 animals in the gulf, it might affect the population in the growth."

Other researchers at the session will present new -- though largely unproven -- ideas for adapting technologies now used to study the structure of the ocean to detect the presence of oil in water as well.

At the University of Southern Mississippi in Hattiesburg, Michael Vera is exploring a technique commonly used to measure temperature gradients in the ocean (ocean-acoustic thermometry) which detects changes in the speed of a sound broadcast through water. Like a lens bending light, ocean water can distort sound in measurable ways that reveal various properties of the ocean.

Vera's computer models, which simulate a Deepwater Horizon-like stream of oil, indicate that the presence of concentrated crude oil should also reveal itself by changing the speed of sound propagation.

"The model suggests that the oil should be detectable near the wellhead," said Vera.

He is working to refine his model with a more realistic simulation of oil that also includes other materials such as methane. Vera has written a lay-language paper about this research, available here: http://www.acoustics.org/press/160th/vera.htm

Mohsen Badiey of the University of Delaware in Newark, Boris Katsnelson of Voronezh University in Russia, and Jim Lynch of the Woods Hole Oceanographic Institute in Massachusetts are investigating another technique used to study the ocean's three-dimensional structure.

Badiey and this team have spent years studying the structure of the ocean near the continental shelf using sound sources and receivers -- ships and moored points that broadcast sound and arrays of sensors in shallow waters that detect the refraction patterns of this sound. Their recent findings reveal that the three-dimensional nature of sound propagation can be used to detect the boundaries of fluids with different indexes of sound refraction.

"This is a rather unusual approach for ocean acoustics," said Lynch. "For almost a century, almost all work has been 2-D slices of sound."

Any kind of stratified front -- gradients of temperature or density -- can cause interferences and perturbations in this sound. Measurements of these interference patterns have recently revealed information about propagating internal waves on the New Jersey continental shelf.

Their preliminary theoretical calculations give them hope that this technique could be adapted to detect oil spills and other liquids in large-scale areas of water up to few thousand square kilometers on the oceanic shelf.

For more information about the session, including several other presentations not described above, see page 24 of the meeting program: http://asa.aip.org/cancun/wednesdayam.pdf

MORE INFORMATION ABOUT THE 2ND PAN-AMERICAN/IBERIAN MEETING ON ACOUSTICS

The 2nd Pan-American/Iberian Meeting on Acoustics takes place at the Fiesta Americana Grand Coral Beach Hotel in Cancun, Mexico, Monday through Friday, November 15-19, 2010. The Fiesta Americana Grand Coral Beach Hotel is located at Blvd. Kukulcán km. 9.5, Cancún Hotel Zone, Cancún, Q.R., 77500. The hotel's main numbers are +52 (998) 881 32 00 and, toll-free, 1-888-830-9008.

USEFUL LINKS

Main meeting website:
http://asa.aip.org/cancun/cancun.html
Full meeting program:
http://asa.aip.org/cancun/program.html
Searchable index:
http://asa.aip.org/asasearch.html
Hotel site:
http://www.fiestamericanagrand.com/portal/p/es_MX/FAG/FCB/1/0/Availability/showMinisitioM2.do?showContenido=/descripcionhotel/FCBdescripcionhotel_M2.html&idioma=en_MX

WORLD WIDE PRESS ROOM

ASA's World Wide Press Room (www.acoustics.org/press) contains tips on dozens of newsworthy stories and with lay-language papers, which are 300-1200 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio and video.

PRESS REGISTRATION

We will grant free registration to credentialed full-time journalists and professional freelance journalists working on assignment for major news outlets. If you are a reporter and would like to attend, please contact Jason Bardi (jbardi@aip.org, 301-209-3091), who can also help with setting up interviews and obtaining images, sound clips, or background information.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA

The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,500 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America -- the world's leading journal on acoustics -- Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. For more information about ASA, visit our website at: http://asa.aip.org

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>