Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Listening for ocean spills and their ecological effects

Acoustic technologies for detecting oil in water presented at 2nd Pan-American/Iberian Meeting on Acoustics

Scientists who study acoustics (the "science of sound") have over the years developed a variety of techniques to probe the hidden depths of oceans. This week, many of these acoustic researchers will come together to discuss how these technologies were used to monitor April's Deepwater Horizon oil spill, to present new data on the gusher's ecological impacts, and to highlight new techniques under development that could improve our ability to detect oil in ocean water.

This special session will take place on November 17, 2010 at the 2nd Pan-American/Iberian Meeting on Acoustics, a major conference on the science and technology of acoustics held in Cancun, Mexico.

Some of these researchers will be presenting original data on the spill itself and its environmental impact.

Thomas Weber and colleagues at the University of New Hampshire in Durham and the National Oceanic and Atmospheric Administration's Alaska Fisheries Science Center and Office of Coast Surveys will talk about Deepwater spill data collected using acoustic technologies originally developed for researching fisheries. For more information on this presentation, see their lay-language paper:

When the deep wellhead burst, Natalia Sidorovskaia of the University of Louisiana at Lafayette found herself in a unique position. As a member of the Littoral Acoustics Demonstration Center of the University of Southern Mississippi, she had been part of a team listening to the waters near this rig for 9 years -- using underwater microphones (hydrophone) to count sperm whales and beaked whales in the area.

"One of our sites was only 9 miles away from the Deepwater Horizon site, said Sidorovskaia.

Thanks to a rapid response award from the National Science Foundation and ship time donated by Greenpeace, Sidorovskaia and two mathematicians were able to revisit to these waters in September and spend a week collecting post-spill data.

By comparing this data to their pre-spill studies, the scientists hope to get an idea of whether the number of whales in the area has changed. They plan to present this new analysis in their talk on November 17.

"Our estimations agree with NOAA's -- about 1,655 sperm whales before the spill," said Sidorovskaia. "If we killed 3 animals in the gulf, it might affect the population in the growth."

Other researchers at the session will present new -- though largely unproven -- ideas for adapting technologies now used to study the structure of the ocean to detect the presence of oil in water as well.

At the University of Southern Mississippi in Hattiesburg, Michael Vera is exploring a technique commonly used to measure temperature gradients in the ocean (ocean-acoustic thermometry) which detects changes in the speed of a sound broadcast through water. Like a lens bending light, ocean water can distort sound in measurable ways that reveal various properties of the ocean.

Vera's computer models, which simulate a Deepwater Horizon-like stream of oil, indicate that the presence of concentrated crude oil should also reveal itself by changing the speed of sound propagation.

"The model suggests that the oil should be detectable near the wellhead," said Vera.

He is working to refine his model with a more realistic simulation of oil that also includes other materials such as methane. Vera has written a lay-language paper about this research, available here:

Mohsen Badiey of the University of Delaware in Newark, Boris Katsnelson of Voronezh University in Russia, and Jim Lynch of the Woods Hole Oceanographic Institute in Massachusetts are investigating another technique used to study the ocean's three-dimensional structure.

Badiey and this team have spent years studying the structure of the ocean near the continental shelf using sound sources and receivers -- ships and moored points that broadcast sound and arrays of sensors in shallow waters that detect the refraction patterns of this sound. Their recent findings reveal that the three-dimensional nature of sound propagation can be used to detect the boundaries of fluids with different indexes of sound refraction.

"This is a rather unusual approach for ocean acoustics," said Lynch. "For almost a century, almost all work has been 2-D slices of sound."

Any kind of stratified front -- gradients of temperature or density -- can cause interferences and perturbations in this sound. Measurements of these interference patterns have recently revealed information about propagating internal waves on the New Jersey continental shelf.

Their preliminary theoretical calculations give them hope that this technique could be adapted to detect oil spills and other liquids in large-scale areas of water up to few thousand square kilometers on the oceanic shelf.

For more information about the session, including several other presentations not described above, see page 24 of the meeting program:


The 2nd Pan-American/Iberian Meeting on Acoustics takes place at the Fiesta Americana Grand Coral Beach Hotel in Cancun, Mexico, Monday through Friday, November 15-19, 2010. The Fiesta Americana Grand Coral Beach Hotel is located at Blvd. Kukulcán km. 9.5, Cancún Hotel Zone, Cancún, Q.R., 77500. The hotel's main numbers are +52 (998) 881 32 00 and, toll-free, 1-888-830-9008.


Main meeting website:
Full meeting program:
Searchable index:
Hotel site:


ASA's World Wide Press Room ( contains tips on dozens of newsworthy stories and with lay-language papers, which are 300-1200 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio and video.


We will grant free registration to credentialed full-time journalists and professional freelance journalists working on assignment for major news outlets. If you are a reporter and would like to attend, please contact Jason Bardi (, 301-209-3091), who can also help with setting up interviews and obtaining images, sound clips, or background information.


The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,500 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America -- the world's leading journal on acoustics -- Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. For more information about ASA, visit our website at:

Jason Socrates Bardi | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>