Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LISA gravitational-wave mission strongly endorsed by National Research Council

19.08.2010
The National Research Council (NRC) has strongly recommended the Laser Interferometer Space Antenna (LISA) as one of NASA's next two major space missions, to start in 2016 in collaboration with the European Space Agency (ESA). LISA will study the universe in a manner different from any other space observatory, by observing gravitational waves. The recommendation was announced August 13 in a press conference at the Keck Center of the National Academies in Washington, D.C.

In the just-concluded "Astro2010" decadal survey, a panel of experts was convened to look at the coming decade and prioritize all research activities in astronomy and astrophysics, as well as at the interface of these disciplines with physics. The survey recommended LISA highly because of the expectation that observations of gravitational waves in space will answer key scientific questions about the astrophysics of the cosmic dawn and the physics of the universe.

"We are very pleased with the NRC's recognition of LISA's extraordinary research opportunities in astrophysics and fundamental physics," says Tom Prince, professor of physics at the California Institute of Technology (Caltech), senior research scientist at the Jet Propulsion Laboratory (JPL), and the U.S. chair of the LISA International Science Team. Scientists from many European countries participate in LISA either as members of the science team or as members of the LISA International Science Community. "We are looking forward to unveiling a new window on the universe by observing thousands of gravitational wave sources."

"This recommendation and our excellent reputation in the scientific community encourages us a lot. With LISA we will open up an entirely new way of observing the universe, with immense potential to enlarge our understanding of physics and astronomy in unforeseen ways," says Karsten Danzmann, European chair of the LISA International Science Team.

"In the past it has sometimes been difficult to get mainstream astronomers to recognize the importance of gravitational wave astronomy," says Marcia Rieke, a professor of astronomy at the University of Arizona and vice chair for the Astro2010 subcommittee on programs. "The ranking of LISA is an indication that astronomers are recognizing the opportunities that LISA presents for using gravitational waves to study the universe in a new way."

"The science case for LISA has become much richer over the last 10 years. On the experimental side, a similar story could be made that what were once novel measurement concepts are now reliable, proven technologies," says LISA science team member Scott Hughes, associate professor of physics at the Massachusetts Institute of Technology.

"In the 13 years I've been involved with LISA, its technology and science have advanced beyond my wildest first dreams," says Sterl Phinney, professor of theoretical astrophysics at Caltech, current co-chair of the sources and data analysis working group of the LISA science team, and chair of the original LISA Mission Definition Team. "I'm looking forward to its precise measurements telling us if the giant black holes in the centers of galaxies really follow the rules of Einstein's theory of general relativity, and which if any of the ideas about how they get made are correct."

"This strong endorsement by America's leading astronomers makes it official: LISA has the potential to become one of the most important astronomical observatories of our time," says Bernard F. Schutz, director of the Max Planck Institute for Gravitational Physics (Albert Einstein Institute/AEI) in Potsdam, Germany and co-chair of the sources and data analysis working group of the LISA science team.

"When LISA was adopted by the ESA in 1995, it was because its observations of gravitational waves would provide powerful insight into the fundamentals of gravity, of Einstein's theory and all its predictions," adds Schutz. "In the last 15 years, astronomers also have learned how LISA can open up hidden chapters in the history of the universe, by listening to the waves made by the very first stars, the earliest black holes, and by some of the oldest stars in existence today. By seeing how the waves from early black holes are stretched out as they move toward us through the expanding universe, LISA can even study the mysterious dark energy."

LISA is designed to be complementary to the ground-based observatories (the Laser Interferometer Gravitational-Wave Observatory, or LIGO, in the United States, and Virgo and GEO-600 in Europe) that currently are actively searching for signs of gravitational waves; both search for ripples in the fabric of space and time formed by the most violent events in the universe, such as the coalescence of black holes, that carry with them information about their origins and about the nature of gravity that cannot be obtained using conventional astronomical tools. The existence of the waves was predicted by Albert Einstein in 1916 in his general theory of relativity.

The LISA instrument will consist of three spacecraft in a triangular configuration with 5-million-kilometer arms (12.5 times the distance from the Earth to the moon), moving in an Earth-like orbit around the sun. Gravitational waves from sources throughout the universe will produce slight oscillations in the arm lengths (changes as small as about 10 picometers, or 10 million millionths of a meter, a length smaller than the diameter of the smallest atom). LISA will capture these motions—and thus measure the gravitational waves—using laser links to monitor the displacements of gold–platinum test masses floating inside the spacecraft. It is slated for launch in the early 2020s.

LISA will observe gravitational waves in a lower frequency band (0.1 milliHertz to 1 Hertz) than that detectable by LIGO and other ground-based instruments, which are designed to sense sources at frequencies above 10 Hertz.

Because gravitational waves are moving ripples in the curvature of space, and because LISA will sense ripples coming simultaneously from tens of thousands of sources in every direction, the instrument acts more like a microphone listening to sound than like a telescope or a camera taking a picture. This new kind of observing tells us directly about the motion of invisible masses, complementing traditional astronomical observations of light, which reveal only visible atoms.

In the U.S. the LISA project is managed by the NASA Goddard Space Flight Center and includes significant participation by JPL, which is managed by Caltech for NASA.

LISA's hardware will get its first test in space with the launch of LISA Pathfinder by 2013. This will include a thorough test of a crucial component of LISA's technology: drag-free operation, whereby the spacecraft shield the test masses from external disturbances by precisely monitoring their motions and moving around them to preserve their free fall. LPF recently reached a key phase of development, during which the flight hardware undergoes rigorous pre-flight testing.

Contacts:

Kathy Svitil
Caltech
(626) 395-8022
ksvitil@caltech.edu
Susanne Milde
Milde Science Communication
49 331 583 93 55
milde@mildemarketing.de

Kathy Svitil | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>