Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid spacetime

23.04.2014

A very slippery superfluid, that's what spacetime could be like

What if spacetime were a kind of fluid? This is the question tackled by theoretical physicists working on quantum gravity by creating models attempting to reconcile gravity and quantum mechanics.

Some of these models predict that spacetime at the Planck scale (10-33cm) is no longer continuous – as held by classical physics – but discrete in nature. Just like the solids or fluids we come into contact with every day, which can be seen as made up of atoms and molecules when observed at sufficient resolution.

A structure of this kind generally implies, at very high energies, violations of Einstein's special relativity (a integral part of general relativity).

In this theoretical framework, it has been suggested that spacetime should be treated as a fluid. In this sense, general relativity would be the analogue to fluid hydrodynamics, which describes the behaviour of fluids at a macroscopic level but tells us nothing about the atoms/molecules that compose them.

Likewise, according to some models, general relativity says nothing about the "atoms" that make up spacetime but describes the dynamics of spacetime as if it were a "classical" object. Spacetime would therefore be a phenomenon "emerging" from more fundamental constituents, just as water is what we perceive of the mass of H2O molecules that form it.

Stefano Liberati, professor at the International School for Advanced Studies (SISSA) in Trieste, and Luca Maccione, a research scientist at the Ludwig-Maximilian University in Munich, have devised innovative ways of using the tolls of elementary particle physics and high energy astrophysics to describe the effects that should be observed if spacetime were a fluid. Liberati and Maccione also proposed the first observational tests of these phenomena. Their paper has just been published in the journal Physical Review Letters.

More in detail...

Quantum mechanics is able to effectively explain three of the four fundamental forces of the Universe (electromagnetism, weak interaction and strong interaction). But it does not explain gravity, which is currently only accounted for by general relativity, a theory developed in the realm of classical physics. Identifying a plausible model of quantum gravity (that is, a description of gravity within a quantum physics framework) is therefore one of the major challenges physics is facing today.

However, despite the many models proposed to date, none has proved satisfactory or, more importantly, amenable to empirical investigation. Studies like the one carried out by Liberati and Maccione provide new instruments for assessing the value of possible scenarios for quantum gravity.

In the past, models considering spacetime as emerging, like a fluid, from more fundamental entities assumed and studied effects that imply changes in the propagation of photons, which would travel at different speeds depending on their energy. But there's more to it:

"If we follow up the analogy with fluids it doesn't make sense to expect these types of changes only" explains Liberati. "If spacetime is a kind of fluid, then we must also take into account its viscosity and other dissipative effects, which had never been considered in detail".

Liberati and Maccione catalogued these effects and showed that viscosity tends to rapidly dissipate photons and other particles along their path, "And yet we can see photons travelling from astrophysical objects located millions of light years away!" he continues. "If spacetime is a fluid, then according to our calculations it must necessarily be a superfluid. This means that its viscosity value is extremely low, close to zero".

"We also predicted other weaker dissipative effects, which we might be able to see with future astrophysical observations. Should this happen, we would have a strong clue to support the emergent models of spacetime", concludes Liberati.

"With modern astrophysics technology the time has come to bring quantum gravity from a merely speculative view point to a more phenomenological one. One cannot imagine a more exciting time to be working on gravity".

Federica Sgorbissa | Eurek Alert!
Further information:
http://www.sissa.it

Further reports about: Liquid SISSA astrophysics fluids fundamental gravity photons physics sense superfluid viscosity

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>