Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid Crystals Light Way to Better Data Storage

24.06.2010
As cell phones and computers continue to shrink, many companies are seeking better ways to store hundreds of gigabytes of data in small, low-power devices.

A special type of liquid crystal, similar to those used in computer displays and televisions, offers a solution. Unlike CDs and DVDs, which store information only on their surface, lasers can encode data throughout a liquid crystal. Known as holographic storage, the technique makes it possible to pack much more information in a tiny space.

But attempts to use liquid crystals for data storage have had limited success. In order to reliably record and rewrite data, researchers must figure out a way to uniformly control the orientation of liquid crystal molecules. Currently, most liquid crystal technologies rely on physical or chemical manipulation, such as rubbing in one direction, to align molecules in a preferred direction.

In an important advance, scientists at the Tokyo Institute of Technology have created a stable, rewritable memory device that exploits a liquid crystal property called the “anchoring transition.” The work is described in the latest issue of the Journal of Applied Physics, which is published by the American Institute of Physics (AIP).

Using either a laser beam or an electric field, the researchers can align rod-like liquid crystal molecules in a polymer. Their tests show that the liquid crystal created by the team can store data, be erased and used again.

"This is the first rewritable memory device utilizing anchoring transition," said Hideo Takezoe, who led the research. And because the device is bi-stable -- the liquid crystals retain their orientation in one of two directions -- it needs no power to keep images, adds Takezoe.

The article, "Heat- and electric-field-driven bistable devices using dye-doped nematic liquid crystals" by Hideo Takezoe et al will appear in the Journal of Applied Physics. See: http://jap.aip.org/

Journalists may request a free PDF of this article by contacting jbardi@aip.org.

ABOUT JOURNAL OF APPLIED PHYSICS
Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See: http://jap.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>