Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond the limits - the potential of new large-scale laser facilities

07.01.2011
Just in time before the start of realization of the three pillars of the European ELI project (Extreme Light Infrastructure: ultra-high power laser systems with special emphasis on Beamlines in Prague, Attosecond Science in Szeged and Nuclear Physics in Bucharest-Magurele), Prof. Gerard Mourou and Prof. Toshiki Tajima have evaluated the potential of large-scale laser facilities with respect to the production of ultra-intense ultra-short pulses of coherent high-energy X-ray and y-ray beams in the current issue of "Science".
Gerard Mourou is Professor at the Ecole Polytechnique and Director of the Institut de Lumière Extrême in Palaiseau and inventor of the chirped pulse amplification technique, an important milestone in high-power laser technology.

Toshiki Tajima, professor at the Ludwig-Maximilian-University (LMU) Munich and member of the DFG cluster of excellence "Munich-Centre for Advanced Photonics" (MAP), is the "father" of laser-driven particle acceleration. Both work together in coordinating the ELI project.

In their article the two experts show that not only are short laser pulses a method to create very high intensities at still manageable pulse energies, but also the reverse is true: high intensities are required in order to produce very short pulses. The key point is that shorter pulses need a broader spectrum before compression. A milestone was the creation of 2.6 fs (2.6-15 seconds) pulses, corresponding to a single wavelength at 800 nm. Shorter pulses require higher frequencies that can be produced by high-harmonic generation in a gas jet.

This technique allowed Prof. Ferenc Krausz (LMU, Max-Planck Institute of Quantum Optics) to achieve a world record of laser pulses with a duration of only 80 attoseconds (10-18 seconds). Still shorter pulses demand higher intensities. In the high-energy relativistic regime beyond 10-18 W/cm2, electrons oscillate at the target surface with changing mass according to their varying velocity. This "oscillating mirror" modulates reflected laser light and such creates very high harmonics (3200th order experimentally verified).

The authors showed in theory and simulation that by shaping relativistic mirrors (i.e. very dense bunches of electrons) laser intensities of 1022 W/cm2 could produce few-attosecond backscattered X-ray or y-ray pulses. High-density relativistic flying mirrors could be produced by imploding spherical targets with very intense laser pulses. By backscattering laser light from such mirrors, laser intensities of 1024 W/cm2 could ultimately produce even y-ray pulses of approx. 100 yoctoseconds (10-22 s) duration. In this way ELI class laser systems have the potential to create the shortest coherent pulses, suitable to probe the vacuum and take a look into the atomic nucleus. Thus the future of high-field science and that of ultrafast optical science are now merged. It is anticipated that there will be an emerging brand new cross-fertilized interdiscipline, such as the ultrafast streaking of vacuum structure going one step beyond atomic streaking.

DOI:10.1126/science.1200292

Christine Kortenbruck | idw
Further information:
http://www.munich.photonics.de

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>