Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond the limits - the potential of new large-scale laser facilities

07.01.2011
Just in time before the start of realization of the three pillars of the European ELI project (Extreme Light Infrastructure: ultra-high power laser systems with special emphasis on Beamlines in Prague, Attosecond Science in Szeged and Nuclear Physics in Bucharest-Magurele), Prof. Gerard Mourou and Prof. Toshiki Tajima have evaluated the potential of large-scale laser facilities with respect to the production of ultra-intense ultra-short pulses of coherent high-energy X-ray and y-ray beams in the current issue of "Science".
Gerard Mourou is Professor at the Ecole Polytechnique and Director of the Institut de Lumière Extrême in Palaiseau and inventor of the chirped pulse amplification technique, an important milestone in high-power laser technology.

Toshiki Tajima, professor at the Ludwig-Maximilian-University (LMU) Munich and member of the DFG cluster of excellence "Munich-Centre for Advanced Photonics" (MAP), is the "father" of laser-driven particle acceleration. Both work together in coordinating the ELI project.

In their article the two experts show that not only are short laser pulses a method to create very high intensities at still manageable pulse energies, but also the reverse is true: high intensities are required in order to produce very short pulses. The key point is that shorter pulses need a broader spectrum before compression. A milestone was the creation of 2.6 fs (2.6-15 seconds) pulses, corresponding to a single wavelength at 800 nm. Shorter pulses require higher frequencies that can be produced by high-harmonic generation in a gas jet.

This technique allowed Prof. Ferenc Krausz (LMU, Max-Planck Institute of Quantum Optics) to achieve a world record of laser pulses with a duration of only 80 attoseconds (10-18 seconds). Still shorter pulses demand higher intensities. In the high-energy relativistic regime beyond 10-18 W/cm2, electrons oscillate at the target surface with changing mass according to their varying velocity. This "oscillating mirror" modulates reflected laser light and such creates very high harmonics (3200th order experimentally verified).

The authors showed in theory and simulation that by shaping relativistic mirrors (i.e. very dense bunches of electrons) laser intensities of 1022 W/cm2 could produce few-attosecond backscattered X-ray or y-ray pulses. High-density relativistic flying mirrors could be produced by imploding spherical targets with very intense laser pulses. By backscattering laser light from such mirrors, laser intensities of 1024 W/cm2 could ultimately produce even y-ray pulses of approx. 100 yoctoseconds (10-22 s) duration. In this way ELI class laser systems have the potential to create the shortest coherent pulses, suitable to probe the vacuum and take a look into the atomic nucleus. Thus the future of high-field science and that of ultrafast optical science are now merged. It is anticipated that there will be an emerging brand new cross-fertilized interdiscipline, such as the ultrafast streaking of vacuum structure going one step beyond atomic streaking.

DOI:10.1126/science.1200292

Christine Kortenbruck | idw
Further information:
http://www.munich.photonics.de

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>