Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond the limits - the potential of new large-scale laser facilities

07.01.2011
Just in time before the start of realization of the three pillars of the European ELI project (Extreme Light Infrastructure: ultra-high power laser systems with special emphasis on Beamlines in Prague, Attosecond Science in Szeged and Nuclear Physics in Bucharest-Magurele), Prof. Gerard Mourou and Prof. Toshiki Tajima have evaluated the potential of large-scale laser facilities with respect to the production of ultra-intense ultra-short pulses of coherent high-energy X-ray and y-ray beams in the current issue of "Science".
Gerard Mourou is Professor at the Ecole Polytechnique and Director of the Institut de Lumière Extrême in Palaiseau and inventor of the chirped pulse amplification technique, an important milestone in high-power laser technology.

Toshiki Tajima, professor at the Ludwig-Maximilian-University (LMU) Munich and member of the DFG cluster of excellence "Munich-Centre for Advanced Photonics" (MAP), is the "father" of laser-driven particle acceleration. Both work together in coordinating the ELI project.

In their article the two experts show that not only are short laser pulses a method to create very high intensities at still manageable pulse energies, but also the reverse is true: high intensities are required in order to produce very short pulses. The key point is that shorter pulses need a broader spectrum before compression. A milestone was the creation of 2.6 fs (2.6-15 seconds) pulses, corresponding to a single wavelength at 800 nm. Shorter pulses require higher frequencies that can be produced by high-harmonic generation in a gas jet.

This technique allowed Prof. Ferenc Krausz (LMU, Max-Planck Institute of Quantum Optics) to achieve a world record of laser pulses with a duration of only 80 attoseconds (10-18 seconds). Still shorter pulses demand higher intensities. In the high-energy relativistic regime beyond 10-18 W/cm2, electrons oscillate at the target surface with changing mass according to their varying velocity. This "oscillating mirror" modulates reflected laser light and such creates very high harmonics (3200th order experimentally verified).

The authors showed in theory and simulation that by shaping relativistic mirrors (i.e. very dense bunches of electrons) laser intensities of 1022 W/cm2 could produce few-attosecond backscattered X-ray or y-ray pulses. High-density relativistic flying mirrors could be produced by imploding spherical targets with very intense laser pulses. By backscattering laser light from such mirrors, laser intensities of 1024 W/cm2 could ultimately produce even y-ray pulses of approx. 100 yoctoseconds (10-22 s) duration. In this way ELI class laser systems have the potential to create the shortest coherent pulses, suitable to probe the vacuum and take a look into the atomic nucleus. Thus the future of high-field science and that of ultrafast optical science are now merged. It is anticipated that there will be an emerging brand new cross-fertilized interdiscipline, such as the ultrafast streaking of vacuum structure going one step beyond atomic streaking.

DOI:10.1126/science.1200292

Christine Kortenbruck | idw
Further information:
http://www.munich.photonics.de

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>